研究人员利用透辉石-硅串联电池突破30%太阳能转化效率

研究人员利用透辉石-硅串联电池突破30%太阳能转化效率研究人员在两项不同的研究中开发出了制造功率转换效率超过30%的过氧化物硅串联太阳能电池的方法,突破了硅基光伏技术的传统极限。其中一项研究通过使用膦酸添加剂优化硅基上的包晶石沉积来提高效率,另一项研究则使用离子液体来改善电荷提取,结果效率分别达到31.2%和32.5%。提高太阳能电池效率的一种方法是优化阳光光谱,以便将其转化为能量。这可以通过将两种或两种以上相互连接的光活性材料堆叠成一个单一装置来实现,从而提高太阳能的收集效率。将过氧化物太阳能电池和硅太阳能电池组合成串联装置,可为实现高性能光伏发电提供一条前景广阔的途径。研究人员通过两项不同的研究,介绍了开发PCE超过30%的透辉石-硅串联太阳能电池的不同策略。StefaanDeWolf和ErkanAydin在一篇相关的《视角》中写道:"突破这一阈值为高性能、低成本的光伏产品进入市场提供了信心。"在一项研究中,XinYuChin及其同事表明,在以微米金字塔为特征的硅底电池(行业标准配置)上均匀沉积包晶顶部电池可促进串联太阳能电池产生高光电流。Chin等人的研究表明,在电池的加工过程中使用膦酸添加剂不仅能改善包晶石的结晶过程,还有助于减少重组损耗。在概念验证中,作者制造了一个活性面积为1.17平方厘米的装置,其认证PCE为31.2%。SilviaMariotti及其同事采用了另一种方法,他们的研究表明,使用离子液体(碘化哌嗪)可以通过产生正偶极子改善带排列,并增强三卤化物包晶和电子传输层界面的电荷提取。通过这种改良,Mariotti等人开发出了一种包晶石-硅串联太阳能电池,其开路电压高达2.0伏,经认证的PCE高达32.5%。...PC版:https://www.cnbeta.com.tw/articles/soft/1380351.htm手机版:https://m.cnbeta.com.tw/view/1380351.htm

相关推荐

封面图片

突破极限:串联太阳能电池转化效率超过20%

突破极限:串联太阳能电池转化效率超过20%这项研究发表在2024年3月4日出版的《能源材料与器件》杂志上。光伏技术是一种利用太阳光并将其转化为电能的技术,因其提供清洁的可再生能源而广受欢迎。科学家们不断努力提高太阳能电池的功率转换效率,即效率的衡量标准。传统单结太阳能电池的功率转换效率已超过20%。要使单结太阳能电池的功率转换效率达到肖克利-奎塞尔极限以上,需要更高的成本。然而,通过制造串联太阳能电池,可以克服单结太阳能电池的肖克利-奎塞尔极限。利用串联太阳能电池,研究人员可以通过将太阳能电池材料堆叠在一起获得更高的能源效率。研究小组利用一种名为硒化锑的半导体,致力于制造串联太阳能电池。过去对硒化锑的研究主要集中在单结太阳能电池的应用上。但研究小组知道,从带隙的角度来看,这种半导体可能被证明是串联太阳能电池的合适底部电池材料。"硒化锑是一种适用于串联太阳能电池的底部电池材料。然而,由于使用硒化锑作为底部电池的串联太阳能电池的报道很少,因此人们很少关注它的应用。"中国科学技术大学材料科学与工程学院教授陈涛说:"我们用它作为底部电池组装了一个具有高转换效率的串联太阳能电池,证明了这种材料的潜力。与使用单层半导体材料的单结太阳能电池相比,串联太阳能电池吸收阳光的能力更强。串联太阳能电池能将更多的太阳光转化为电能,因此比单结太阳能电池更节能。"演示概念验证串联太阳能电池,该电池由硒化锑和宽带隙过磷酸钙作为底部和顶部子电池吸收材料组成。通过优化顶部电池的透明电极和底部电池的制备工艺,该装置实现了超过20%的功率转换效率。来源:《能源材料与器件》,清华大学出版社研究小组制作了具有透明导电电极的过氧化物/硒化锑串联太阳能电池,以优化光谱响应。他们通过调整顶部电池透明电极层的厚度,获得了超过17%的高效率。他们通过引入双电子传输层,优化了硒化锑底部电池,实现了7.58%的功率转换效率。当他们用机械方法将顶部和底部电池组装成四端串联太阳能电池时,功率转换效率超过了20.58%,高于独立子电池的功率转换效率。他们的串联太阳能电池具有出色的稳定性和无毒成分。陈说:"这项工作提供了一种新的串联器件结构,并证明硒化锑是一种很有前景的吸收材料,可用于串联太阳能电池的底部电池应用。"展望未来,研究小组希望努力开发集成度更高的双端串联太阳能电池,并进一步提高器件性能。"硒化锑的高稳定性为制备两端串联太阳能电池提供了极大的便利,这意味着它在与多种不同类型的顶层电池材料搭配时可能会取得良好的效果。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1433485.htm手机版:https://m.cnbeta.com.tw/view/1433485.htm

封面图片

32.5%!过氧化物/硅串联太阳能电池技术进步打破了转化效率纪录

32.5%!过氧化物/硅串联太阳能电池技术进步打破了转化效率纪录但最好的结果似乎是当这两种材料搁置其竞争关系并合作时。过氧化物/硅串联太阳能电池比任何一种材料单独使用都更有效,因为它们能够收集太阳光谱的不同部分--过氧化物能更好地吸收蓝光,而硅则更注重红色和红外波长。新的HZB装置是由一个由几层薄的过氧化物组成的顶部电池和一个用硅做的底部电池组成的。有了一系列的层,不同颜色的光就可以过滤到较低的层次,并将电损耗降到最低。该团队还在活性区域和电极之间设计了一个新界面,这有助于提高电池的整体效率。新型过氧化物/硅串联太阳能电池的分解图最终的结果是一个拥有32.5%转化效率的过氧化物/硅串联太阳能电池。根据美国国家可再生能源实验室(NREL)保存并定期更新的图表,这个已经被独立验证的新记录是目前所有新兴光伏技术中最高的。与几个月前的记录保持者31.25%相比,这是一个相当大的进步,而一年前它甚至不到30%。该团队声称这一最新进展将该技术推向了一个重要的新领域。HZB科学主任BerndRech教授说:"在32.5%转化率下,HZB串联的太阳能电池效率现在已经达到了以前只有昂贵的III/V半导体才能达到的范围。NREL的图表清楚地显示了EPFL和HZB的最后两个增长是多么的壮观"。...PC版:https://www.cnbeta.com.tw/articles/soft/1335723.htm手机版:https://m.cnbeta.com.tw/view/1335723.htm

封面图片

硅钙钛矿太阳能电池即将彻底改变发电效率

硅钙钛矿太阳能电池即将彻底改变发电效率钙钛矿是一类与钙钛氧化物矿物具有相同晶体结构的化合物。这种高度灵活的材料可用于多种应用,包括超声波机器、存储芯片和发电太阳能电池。最近的研究表明,钙钛矿可能是推动太阳能电池行业发电效率达到新水平的“秘密武器”。目前的太阳能电池技术正在迅速接近其最高效率水平,但仍达不到太阳能作为应对全球变暖的重要缓解因素所需的水平。科学家表示,效率必须超过30%,且新太阳能电池板的安装率必须比目前的采用水平提高十倍。通过在硅基底上添加额外的钙钛矿层(两者都具有半导体特性),可以增强从阳光中捕获的能量。硅层捕获红光中的电子,而钙钛矿层捕获蓝光。能量吸收能力的提高将导致太阳能整体价格的降低,从而加快太阳能电池板的部署和采用。科学家们花费数年时间开发高效的硅钙钛矿太阳能电池技术,2023年似乎将标志着该领域的一个重要里程碑。最近的研究进展已成功将硅-钙钛矿串联电池的效率提高到30%以上。进展速度如此之快,以至于这项技术很快就会在商用产品中展示其增强的功能。沙特阿拉伯阿卜杜拉国王科技大学材料科学与工程教授StefaanDeWolf认为,2023年太阳能电池技术领域将带来重大进展。DeWolf的团队已经在硅钙钛矿太阳能电池中实现了33.7%的效率水平,但他们的工作细节仍需要在科学期刊上发表。另一个由德国亥姆霍兹柏林材料与能源中心的SteveAlbrecht领导的研究小组最近发表了一项关于串联硅钙钛矿电池的研究,该电池可以实现高达32.5%的功率转换效率。由瑞士洛桑联邦理工学院的XinYuChin领导的第三个小组已经证明,串联电池的效率达到31.25%,具有“高效率和低制造成本的潜力”。DeWolf表示,超过30%的能源门槛将增强人们对“高性能、低成本光伏发电可以推向市场”的信心。到2022年,太阳能发电容量将达到1.2太瓦(TW),到2050年必须增加到至少75太瓦,才能缓解全球变暖和温室气体排放带来的最灾难性的情况。商业领域正在积极致力于提高太阳能电池的效率。中国最大的制造商(隆基股份)在实验室中已经达到了33.5%的效率。下一步涉及将高效硅钙钛矿串联电池的尺寸从实验条件(1平方厘米)扩大到商业级特征(15平方厘米)。DeWolf对实现这一目标充满信心。...PC版:https://www.cnbeta.com.tw/articles/soft/1370097.htm手机版:https://m.cnbeta.com.tw/view/1370097.htm

封面图片

科学家揭示效率破纪录的串联太阳能电池背后的秘密

科学家揭示效率破纪录的串联太阳能电池背后的秘密透辉石/硅串联太阳能电池的照片。晶片中间的活性区域被银电极包围。图片来源:JohannesBeckedahl/LeaZimmerman/HZB"柏林亥姆霍兹中心在硅异质结技术和包晶体太阳能电池方面都积累了丰富的专业知识,而且合作非常密切,因此我们才有可能取得这一成果,"柏林亥姆霍兹中心包晶体串联太阳能电池研究小组负责人SteveAlbrecht教授说。例如,HySPRINT创新实验室的包光体专家和光伏能力中心(PVcomB)的硅专家已经为串联太阳能电池创造了多项效率世界纪录。现在,《科学》杂志首次详细介绍了这种串联太阳能电池,2022年12月,它还创造了新的效率世界纪录,将32.5%的入射日光转化为电能,成为当时的头条新闻。这一世界纪录一直保持到2023年4月中旬被沙特阿拉伯KAUST研究中心光伏实验室的一个小组打破。该研究领域竞争异常激烈,全世界有许多小组都在从事这一领域的研究。现在,HZB团队再次率先提交了一份扎实、科学严谨的同行评审技术出版物,其中包含精确的测量数据集以及有关串联电池结构的详细信息。图中所示为串联太阳能电池的结构示意图,底部电池由硅制成,顶部电池由包晶石制成。顶部电池利用光谱中的"蓝光"成分,而底部电池则转换红光和近红外线。不同的薄层优化了光的利用,并将损耗降至最低。图片来源:EikeKöhnen/HZB阿尔布雷希特和他的团队主要依靠博士后研究员西尔维亚-马里奥蒂(SilviaMariotti)博士和艾克-科宁(EikeKöhnen)博士开发的一种经过大幅改良的过氧化物晶化合物和一种新型碘化哌嗪分子进行复杂的表面改性。这在很大程度上抑制了电荷重组,并显著降低了相关损耗。利用特殊的测量技术,研究人员能够详细分析串联电池界面和各层的基本过程,并在加深理解的基础上进一步优化这些过程。随后,研究人员将研发成果结合起来,应用于串联太阳能电池,并对顶部电极进行了进一步调整,以改善光学性能。来自不同机构的许多专家都参与了串联电池的生产和开发:例如,波茨坦大学的一个小组对单个和串联电池进行了先进的光电测量;西班牙圣塞巴斯蒂安的JoxeMariKorta中心合成了用于改性表面的新型分子;立陶宛考纳斯技术大学的一个小组帮助加工了薄膜质量极高的新型过氧化物化合物。只有将所有改性结合起来,才有可能实现光电压(开路电压)和光电流的最大值,从而提高效率。在过去几年中,世界各地的研究机构和光伏公司一直在不断提高太阳能电池的效率。最近两年的情况尤其令人兴奋:2021年底,德国联邦科学院的团队将硅和过氧化物串联太阳能电池的效率提高到了略低于30%(29.8%)的创纪录水平。这是通过在太阳能电池中引入特殊的周期性纳米结构实现的。2022年夏天,瑞士洛桑联邦理工学院(EPFL)报告了一种效率为31.3%的经认证的串联电池。从2022年12月到2023年4月中旬,世界纪录又回到了HZB,达到了32.5%,直到沙特阿拉伯的KAUST光伏实验室在实验室中展示了33.2%的过氧化物硅串联电池。2023年5月,KAUST甚至成功地将这一记录提高到了33.7%。阿尔布雷希特说:"我们对我们科学学科的这些巨大进步感到非常兴奋。它们给我们带来了希望,让我们相信这项技术能够在未来数年内为应对气候变化的可持续能源供应做出重要贡献,因为珍珠光泽石/硅串联太阳能电池的升级和工业化生产也是可行的"。HZB的科学主任BerndRech教授说:"硅/透辉石串联太阳能电池的效率现在已经达到了以前只有昂贵的III/V半导体才能达到的范围"。制造这种串联太阳能电池的技术原则上已经存在,而且成本可能很低;现在的重点是进一步提高户外使用的稳定性。...PC版:https://www.cnbeta.com.tw/articles/soft/1378677.htm手机版:https://m.cnbeta.com.tw/view/1378677.htm

封面图片

隆基 BC 技术刷新硅太阳能电池效率世界纪录

隆基BC技术刷新硅太阳能电池效率世界纪录隆基绿能今日官微消息,近日,经德国哈梅林太阳能研究所(ISFH)权威认证报告,隆基绿能自主研发的背接触晶硅异质结太阳电池(HeterojunctionBackContact,HBC),利用全激光图形化可量产制程工艺获得27.09%的电池转换效率,创造单结晶硅太阳能电池效率的新世界纪录,这是继2022年11月隆基绿能创造26.81%的硅太阳能电池效率世界纪录后的又一次突破。

封面图片

研究人员利用分子工程提高有机太阳能电池效率

研究人员利用分子工程提高有机太阳能电池效率聚合物太阳能电池以重量轻、灵活性强而著称,是可穿戴设备的理想选择。然而,生产过程中所需的有毒卤化溶剂却阻碍了它们的广泛应用。这些溶剂带来了环境和健康风险,限制了这些太阳能电池的吸引力。遗憾的是,毒性较低的替代溶剂缺乏相同的溶解性,因此需要更高的温度和更长的加工时间。这种低效率进一步阻碍了聚合物太阳能电池的应用。开发出一种无需使用卤化溶剂的方法,可以显著提高有机太阳能电池的效率,使其更适用于可穿戴技术。在最近发表的一篇论文中,研究人员概述了如何利用侧链工程改善聚合物供体和小分子受体之间的分子相互作用,从而减少对卤化加工溶剂的需求。论文最近发表在《纳米研究能源》(NanoResearchEnergy)上。"聚合物供体和小分子受体的混合形态受其分子相互作用的影响很大,而分子相互作用可由供体和受体材料之间的界面能决定。当它们的表面张力值相似时,供体和受体之间的界面能和分子相互作用预计会更有利,"韩国庆尚国立大学教授Yun-HiKim说。"为了增强聚合物供体的亲水性并减少分子脱杂,侧链工程可能是一条可行的途径。"侧链工程的作用侧链工程是指在分子的主链上添加一个称为侧链的化学基团。侧链中的化学基团会影响大分子的性质。研究人员推测,添加基于低聚乙二醇(OEG)的侧链将提高聚合物供体的亲水性,这要归功于侧链中的氧原子。具有亲水性的分子会被水吸引。聚合物太阳能电池的整体性能和聚合物太阳能电池中亲水侧链分子的热稳定性示意图根据整体性能和热稳定性,在制造PSC时,碳氢化合物和亲水性低聚乙二醇(2EG)的混合物比标准溶剂的性能更好。资料来源:清华大学出版社《纳米研究能源》聚合物供体和小分子受体亲水性的不同会影响它们的相互作用。随着聚合物供体亲水性的增加以及它们与小分子受体之间相互作用的改善,可以使用非卤化加工溶剂,而不会影响太阳能电池的性能。事实上,用OEG侧链连接苯并二噻吩聚合物供体制成的聚合物太阳能电池的功率转换效率为17.7%,高于15.6%。提高效率和稳定性为了比较结果,研究人员设计了带有OEG侧链、碳氢化合物侧链或50%碳氢化合物侧链和50%OEG侧链的苯并二噻吩基聚合物供体。Kim说:"这阐明了侧链工程对非卤化溶剂加工聚合物太阳能电池的混合形态和性能的影响。我们的研究结果表明,具有亲水性OEG侧链的聚合物可以提高与小分子受体的混溶性,并在非卤化加工过程中提高聚合物太阳能电池的功率转换效率和器件稳定性。"除了提高功率转换效率外,带有OEG侧链的聚合物太阳能电池还具有更高的热稳定性。热稳定性对于聚合物太阳能电池的规模化至关重要,因此研究人员将其加热到120摄氏度,然后比较功率转换效率。加热120小时后,带有碳氢化合物侧链的聚合物的功率转换效率仅为最初的60%,而且表面出现了不规则现象,而碳氢化合物和OEG的混合物则保持了最初功率转换效率的84%。Kim说:"我们的研究结果可以为设计聚合物供体提供有用的指导,从而利用非卤化溶剂加工生产出高效稳定的聚合物太阳能电池。"参考文献:SoodeokSeo、Jun-YoungPark、JinSuPark、SeungjinLee、Do-YeongChoi、Yun-HiKim和BumjoonJ.Kim于2023年7月24日发表在《纳米研究能源》上的论文:"亲水侧链聚合物供体可通过非卤化溶剂处理实现高效、热稳定的聚合物太阳能电池"。doi:10.26599/nre.2023.9120088编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1403357.htm手机版:https://m.cnbeta.com.tw/view/1403357.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人