两全其美:数字逻辑与类脑模拟操作的融合

两全其美:数字逻辑与类脑模拟操作的融合通过将超薄二维半导体与铁电材料无缝集成,这项发表在《自然-电子学》(NatureElectronics)杂志上的研究揭示了一种提高能效和增加计算新功能的新方法。这种新配置将传统的数字逻辑与类似大脑的模拟运算融为一体。更快、更高效的电子器件纳米电子器件实验室(Nanolab)与微系统实验室(MicrosystemsLaboratory)合作进行的创新,围绕着一种独特的材料组合,实现了大脑启发式功能和先进的电子开关,包括引人注目的负电容隧道场效应晶体管(TFET)。在电子世界中,晶体管或"开关"就好比电灯开关,决定着电流的流向(开)或不流(关)。这就是二进制计算机语言中著名的"1"和"0",从处理信息到存储记忆,这一简单的开关动作几乎与我们电子设备的所有功能密不可分。TFET是一种特殊的开关,其设计考虑到了未来的节能需求。与需要一定最低电压才能开启的传统晶体管不同,TFET可以在低得多的电压下工作。这种优化设计意味着它们在开关时消耗的能量要少得多,从而大大降低了所集成器件的总体功耗。这项发表在《自然-电子学》(NatureElectronics)上的研究通过将超薄二维半导体与铁电材料无缝集成,揭示了一种提高能效和增加计算新功能的新方法。新配置将传统的数字逻辑与类似大脑的模拟操作融合在一起。资料来源:EPFL纳米实验室负责人阿德里安-约内斯库(AdrianIonescu)教授说:"我们的努力代表了电子学领域的重大飞跃,打破了以往的性能基准,负电容二硒化钨/二硒化锡TFET的出色性能以及在同一技术中创造突触神经元功能的可能性就是例证。EPFL的博士生SadeghKamaei首次在完全集成的电子系统中利用了二维半导体和铁电材料的潜力。二维半导体可用于超高效数字处理器,而铁电材料则为同时连续处理和存储记忆提供了可能。将这两种材料结合起来,就有机会充分利用各自的数字和模拟能力。现在,我们上述比喻中的电灯开关不仅更加节能,而且它打开的电灯也会更加明亮。Kamaei补充说:"使用二维半导体并将其与铁电材料整合在一起的工作充满了挑战,但也收获颇丰。我们研究成果的潜在应用可能会重新定义我们未来如何看待电子设备以及如何与电子设备互动。"将传统逻辑与神经形态电路相结合此外,这项研究还深入探讨了为神经形态计算创建类似于生物突触(脑细胞之间错综复杂的连接器)的开关。Ionescu补充说:"这项研究标志着冯-诺依曼逻辑电路和神经形态功能的首次共同整合,为创建创新计算架构指明了令人兴奋的方向,这种架构的特点是功耗极低,并且具有迄今为止尚未探索过的结合数字信息处理构建神经形态功能的能力。这些进步预示着电子设备将以与人脑平行的方式运行,以更符合人类认知的方式将计算速度与信息处理结合起来。例如,神经形态系统可能擅长传统计算机难以完成的任务,如模式识别、感官数据处理,甚至某些类型的学习。传统逻辑与神经形态电路的融合预示着一场影响深远的变革。未来的设备不仅会更智能、更快速,而且能效也会呈指数级增长。"...PC版:https://www.cnbeta.com.tw/articles/soft/1381221.htm手机版:https://m.cnbeta.com.tw/view/1381221.htm

相关推荐

封面图片

超越二进制:怀俄明大学研究人员用二维磁性器件实现类脑概率计算机

超越二进制:怀俄明大学研究人员用二维磁性器件实现类脑概率计算机访问:Saily-使用eSIM实现手机全球数据漫游安全可靠源自NordVPN磁控技术的突破怀俄明大学的一个研究小组创造了一种创新方法,可以控制超薄二维范德华磁体中的微小磁态--这一过程类似于打开电灯开关控制灯泡。怀俄明大学物理与天文学系助理教授、量子信息科学与工程中心临时主任田纪发说:"我们的发现可能会带来存储更多数据、功耗更低的先进存储设备,或者能够开发出全新类型的计算机,快速解决目前难以解决的问题。"怀俄明大学物理与天文系助理教授、量子信息科学与工程中心临时主任田纪发。资料来源:怀俄明大学田是一篇题为"Tunnelingcurrent-controlledspinstatesinfew-layervanderWaalsmagnets"的论文的通讯作者,该论文于5月1日发表在《自然通讯》(NatureCommunications)上。了解范德华材料范德瓦耳斯材料由结合力较强的二维层组成,这些二维层通过较弱的范德瓦耳斯力在三维空间结合在一起。例如,石墨就是一种范德华材料,在工业中广泛用于电极、润滑剂、纤维、热交换器和电池。研究人员可以利用层间范德华力的性质,使用Scotch胶带将层间剥离成原子厚度。研究小组开发了一种被称为磁隧道结的装置,它使用三碘化铬--一种只有几个原子厚的二维绝缘磁体--夹在两层石墨烯之间。通过向夹层发送微小的电流(称为隧道电流),磁铁的磁畴(大小约为100纳米)方向就能在单个三碘化铬层中得到控制。磁自旋控制的进展具体来说,"这种隧道电流不仅能控制两个稳定自旋态之间的切换方向,还能诱导和操纵瞬变自旋态之间的切换,即随机切换。这一突破不仅引人入胜,而且非常实用。与传统方法相比,它的能耗要低三个数量级,就像把旧灯泡换成发光二极管一样,这可能会改变未来技术的游戏规则,"田说。"我们的研究可以开发出比以往更快、更小、更节能、更强大的新型计算设备。我们的研究标志着二维极限磁学的重大进展,并为新型、功能强大的计算平台(如概率计算机)奠定了基础。"开发概率计算机传统计算机使用比特将信息存储为0和1。这种二进制代码是所有传统计算过程的基础。量子计算机使用量子比特,可以同时表示"0"和"1",从而成倍提高处理能力。田说:"在我们的工作中,我们开发出了你可能认为是概率位的东西,它可以根据隧道电流控制概率在'0'和'1'(两种自旋状态)之间切换。这些比特基于超薄二维磁体的独特特性,能以类似大脑神经元的方式连接在一起,形成一种新型计算机,即概率计算机。"新技术带来计算革命"这些新型计算机之所以具有潜在的革命性意义,是因为它们能够处理对传统计算机甚至量子计算机来说都极具挑战性的任务,例如某些类型的复杂机器学习任务和数据处理问题,它们具有天然的容错性,设计简单,占用空间较小,这可能会带来更高效、更强大的计算技术"。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1430341.htm手机版:https://m.cnbeta.com.tw/view/1430341.htm

封面图片

【何宝宏:元宇宙将推动数字经济与实体经济走向深入融合】

【何宝宏:元宇宙将推动数字经济与实体经济走向深入融合】中国信息通信研究院云计算与大数据研究所所长何宝宏在接受采访时表示,我国产业数字化规模仍有不小的提升空间,数字技术创新应用依然迫切,此外,元宇宙将推动数字经济与实体经济走向深入融合。当前的数字经济更像是传统经济的数字化转型,而未来的数字原生世界,元宇宙或者Web3.0里面企业的组织形态理应发生非常大的变化。元宇宙是数字技术、数字产品、数字产业发展的必然形态,将推动数字经济与实体经济走向深入融合。何宝宏表示,当前,元宇宙概念边界仍在持续探索,技术工具还有较大优化空间,现象级应用有待开发,整体还处于起步培育的初级阶段。

封面图片

以水和盐为介质的人造突触面世 有望研制出类脑计算系统

以水和盐为介质的人造突触面世有望研制出类脑计算系统荷兰乌得勒支大学和韩国西江大学科学家构建出一种新型人造突触。与传统基于固体材料的人造突触不同,新突触基于人脑内的介质水和盐。这项研究首次证明,与人脑相同的介质系统可处理复杂信息。相关论文发表于最新一期《美国国家科学院院刊》。突触是大脑中负责在神经元之间传输信号的通道组成部分。该人造突触尺寸为150微米×200微米,被称为离子电子忆阻器,包括一个充满水和盐离子的锥形微通道,能模仿突触行为。

封面图片

新型二维材料可以以惊人的精度改善先进系统和通信的光学调制

新型二维材料可以以惊人的精度改善先进系统和通信的光学调制可调谐光学材料(TOMs)正在彻底改变现代光电子技术,即检测、产生和控制光的电子设备。在集成光子电路中,精确控制材料的光学特性对于开启光操纵领域的突破性和多样化应用至关重要。二维材料,如过渡金属二卤化物(TMD)和石墨烯对外部刺激表现出非凡的光学响应。然而,如何在短波红外(SWIR)区域内实现独特的调制,同时在紧凑的空间内保持精确的相位控制和较低的信号损耗,一直是个难题。在发表于《自然-光科学与应用》(NatureLightScience&Application)的一篇题为"基于铁离子二维材料的复合硅光子学中的电光调谐"(Electro-OpticTuninginCompositeSiliconPhotonicsBasedonFerroionic2DMaterials)的新论文中,由研究科学家加达-杜沙克(GhadaDushaq)和电气工程副教授兼PRL实验室主任马哈茂德-拉斯(MahmoudRasras)领导的科学家团队通过利用铁离子二维材料CuCrP2S6(CCPS),展示了一种主动光操纵的新途径。通过将首创的二维原子级薄材料集成到硅芯片上的微环结构中,该团队提高了设备的效率和紧凑性。当这些二维材料集成到硅光学器件上时,就会表现出一种非凡的能力,即在不产生任何衰减的情况下,对传输信号的光学特性进行精细调节。这种技术有望彻底改变环境传感、光学成像和神经形态计算等对光灵敏度要求极高的领域。Rasras说:"这项创新可精确控制折射率,同时最大限度地减少光损耗,提高调制效率,并减少占地面积,使其适用于下一代光电子技术。从相控阵和光学开关到环境传感和计量、光学成像系统,以及光敏人工突触中的神经形态系统,都有一系列令人兴奋的潜在应用。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1429674.htm手机版:https://m.cnbeta.com.tw/view/1429674.htm

封面图片

科学家创造人工突触 搭配水和盐制造出一种类脑计算机

科学家创造人工突触搭配水和盐制造出一种类脑计算机为了提高传统计算机的能效,科学家们长期以来一直从人脑中寻找灵感。他们希望通过各种方式模仿人脑的非凡能力。这些努力导致了类脑计算机的开发,它摆脱了传统的二进制处理方式,采用了类似于我们大脑的模拟方法。然而,我们的大脑是以水和称为离子的溶解盐粒子为介质运行的,而目前大多数受大脑启发的计算机则依赖于传统的固体材料。这就提出了一个问题:我们是否可以通过采用相同的媒介来更忠实地复制大脑的工作原理?这种引人入胜的可能性正是离子神经形态计算这一新兴领域的核心所在。突触的图示。突触由胶体球组成,球体之间有纳米通道。资料来源:乌得勒支大学在《美国国家科学院院刊》(PNAS)发表的最新研究中,科学家们首次展示了一个依靠水和盐的系统,它具有处理复杂信息的能力,与我们大脑的功能如出一辙。这一发现的核心是一个150×200微米的微小装置,它模仿了突触的行为--突触是大脑中负责在神经元之间传递信号的重要组成部分。乌特勒支大学理论物理研究所和数学研究所的博士生蒂姆-卡姆斯马(TimKamsma)是这项研究的第一作者,他兴奋地表示:"虽然能够处理复杂信息的人工突触已经存在,但我们现在首次表明,利用水和盐也能实现这一创举。我们利用与大脑相同介质的系统,有效地复制了神经元的行为"。该装置由韩国科学家开发,被称为离子电子忆阻器,由一个锥形微通道组成,通道内充满水和盐溶液。在接收电脉冲时,液体中的离子会通过通道迁移,从而导致离子浓度的改变。根据脉冲的强度(或持续时间),通道的电导率会相应调整,从而反映出神经元之间连接的加强或减弱。电导的变化程度是输入信号的可测量代表。另一项发现是,通道的长度会影响浓度变化消散所需的持续时间。"卡姆斯马阐述说:"这表明有可能定制通道,使其在不同的持续时间内保留和处理信息,这与我们大脑中观察到的突触机制类似。人工突触的显微图片。资料来源:乌得勒支大学这一发现的起源可以追溯到卡姆斯马不久前开始博士研究时的一个想法。他将这个以利用人工离子通道完成分类任务为中心的想法转化为一个强大的理论模型。卡姆斯马回忆说:"巧合的是,在此期间,我们与韩国的研究小组有了交集。他们以极大的热情接受了我的理论,并迅速启动了基于该理论的实验工作。令人惊讶的是,仅仅三个月后,初步研究结果就出来了,与卡姆斯马理论框架中的预测非常吻合。见证从理论猜想到实际成果的转变,最终产生这些漂亮的实验结果,令人无比欣喜。"卡姆斯马强调了这项研究的基础性,并着重指出,离子神经形态计算虽然发展迅速,但仍处于起步阶段。设想中的结果是,与当今技术相比,计算机系统在效率和能耗方面具有极大的优势。然而,这一愿景能否实现,目前仍是猜测。不过,卡姆斯马认为该出版物是向前迈出的重要一步。他断言:"这标志着计算机不仅能够模仿人脑的通信模式,而且还能利用相同的媒介,这是一个至关重要的进步。或许,这最终将为计算系统更忠实地复制人脑的非凡能力铺平道路。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1429167.htm手机版:https://m.cnbeta.com.tw/view/1429167.htm

封面图片

麻省理工学院在将二维材料集成到设备方面取得突破

麻省理工学院在将二维材料集成到设备方面取得突破这幅艺术家的作品展示了麻省理工学院研究人员开发的一种新型集成平台。通过对表面力进行工程设计,他们只需一个接触和释放步骤,就能将二维材料直接集成到设备中。图片来源:SampsonWilcox/电子研究实验室提供但是,将二维材料集成到计算机芯片等设备和系统中是众所周知的难题。这些超薄结构可能会受到传统制造技术的破坏,这些技术通常依赖于使用化学品、高温或蚀刻等破坏性工艺。为了克服这一挑战,麻省理工学院和其他大学的研究人员开发出了一种新技术,只需一步就能将二维材料集成到设备中,同时保持材料表面和由此产生的界面原始无缺陷。他们的方法依赖于纳米级的工程表面力,使二维材料可以物理叠加到其他预制设备层上。由于二维材料不会受损,研究人员可以充分利用其独特的光学和电学特性。所开发的平台利用行业兼容的工具集,使这一过程可以扩展。在这里,主要作者彼得-萨特斯韦特(PeterSatterthwaite)使用MIT.nano中修改过的配准工具进行图案化配准集成。他们利用这种方法制造出了二维晶体管阵列,与使用传统制造技术制造出的器件相比,实现了新的功能。他们的方法用途广泛,可用于多种材料,可在高性能计算、传感和柔性电子器件等领域广泛应用。释放这些新功能的核心是形成清洁界面的能力,所有物质之间存在的特殊力量(称为范德华力)将这些界面连接在一起。电子工程与计算机科学(EECS)助理教授、电子学研究实验室(RLE)成员FarnazNiroui是介绍这项工作的新论文的资深作者。"范德华积分有一个基本限制,"她解释说,"由于这些作用力取决于材料的内在特性,因此无法轻易调整。因此,有些材料无法仅利用其范德华相互作用来直接相互整合。我们提出了一个解决这一限制的平台,以帮助范德华集成变得更加通用,从而促进具有新功能和改进功能的基于二维材料的设备的开发。"Niroui与论文第一作者、电子工程与计算机科学研究生PeterSatterthwaite,电子工程与计算机科学教授、RLE成员JingKong,以及麻省理工学院、波士顿大学、台湾国立清华大学、台湾国家科学技术委员会和台湾国立成功大学的其他人共同撰写了这篇论文,这项研究最近发表在《自然-电子学》上。纳米级表面力的多样性使研究人员能够将粘合剂基质转移到许多不同的材料上。例如,在这里,通过使用粘合聚合物,他们能够将图案化的石墨烯(一原子厚的碳薄片)从源基底(上图)转移到接收粘合聚合物(下图)上。图片来源:Niroui小组提供使用传统制造技术制造计算机芯片等复杂系统可能会变得一团糟。通常情况下,像硅这样的硬质材料会被凿成纳米级,然后与金属电极和绝缘层等其他元件连接,形成有源器件。这种加工过程会对材料造成损害。最近,研究人员专注于使用二维材料和一种需要连续物理堆叠的工艺,自下而上地构建设备和系统。在这种方法中,研究人员不是使用化学胶水或高温将脆弱的二维材料粘合到硅等传统表面上,而是利用范德华力将一层二维材料物理集成到设备上。范德华力是存在于所有物质之间的自然吸引力。例如,壁虎的脚会因为范德华力而暂时粘在墙上。虽然所有材料都存在范德华力,但根据材料的不同,范德华力并不总是强大到足以将它们粘在一起。例如,一种名为二硫化钼的流行半导体二维材料会粘在黄金上,但不会通过与二氧化硅等绝缘体表面的物理接触直接转移到该表面上。然而,通过整合半导体层和绝缘层制成的异质结构是电子设备的关键组成部分。以前,实现这种集成的方法是将二维材料粘合到一个中间层(如金)上,然后使用该中间层将二维材料转移到绝缘体上,最后再使用化学品或高温去除中间层。麻省理工学院的研究人员没有使用这种牺牲层,而是将低粘性绝缘体嵌入高粘性基质中。这种粘合基质使二维材料粘附在嵌入的低粘合力表面上,提供了在二维材料和绝缘体之间形成范德华界面所需的力。制作矩阵为了制造电子设备,他们在载体基底上形成金属和绝缘体的混合表面。然后将该表面剥离并翻转,就会看到一个完全光滑的顶面,其中包含所需的器件构件。这种光滑度非常重要,因为表面和二维材料之间的间隙会阻碍范德华相互作用。然后,研究人员在完全洁净的环境中单独制备二维材料,并将其与制备好的器件堆栈直接接触。"一旦混合表面与二维层接触,无需任何高温、溶剂或牺牲层,它就能拾取二维层并将其与表面整合在一起。"萨特斯韦特解释说:"通过这种方式,我们可以实现传统上被禁止的范德华集成,但现在却可以实现,而且只需一步就能形成功能齐全的器件。"这种单步工艺可使二维材料界面保持完全清洁,从而使材料达到其性能的基本极限,而不会受到缺陷或污染的影响。而且,由于二维材料的表面也保持原始状态,研究人员可以对二维材料的表面进行工程设计,以形成与其他元件的特征或连接。例如,他们利用这种技术制造出了p型晶体管,而利用二维材料制造这种晶体管通常是具有挑战性的。他们的晶体管在以前的研究基础上有所改进,可以为研究和实现实用电子产品所需的性能提供一个平台。展望未来他们的方法可以大规模地制造更大的装置阵列。粘合基质技术还可用于一系列材料,甚至与其他力量结合使用,以增强这一平台的多功能性。例如,研究人员将石墨烯集成到器件上,利用聚合物基质形成所需的范德华界面。在这种情况下,粘附依靠的是化学作用,而不仅仅是范德华力。未来,研究人员希望以此平台为基础,整合各种二维材料库,在不受加工损伤影响的情况下研究其内在特性,并利用这些卓越功能开发新的设备平台。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1423078.htm手机版:https://m.cnbeta.com.tw/view/1423078.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人