牙膏中的常见成分可延长电动汽车的行驶里程

牙膏中的常见成分可延长电动汽车的行驶里程与锂离子电池相比,非锂离子电池的化学成分能在一定体积或重量下储存两倍或更多的能量。它们可以为汽车提供更长距离的动力,甚至有一天可以为长途卡车和飞机提供动力。人们期望这种电池的广泛使用将有助于解决气候变化问题。主要问题在于,它们的高能量密度会随着反复充放电而迅速下降。主要竞争者之一的阳极(负极)由锂金属制成,取代了锂离子电池通常使用的石墨。因此,它被称为"锂金属"电池。阴极(正极)是一种含有镍、锰和钴(NMC)的金属氧化物。虽然它的能量密度是锂离子电池的两倍多,但这种出色的性能在不到一百个充放电周期内就会迅速消失。该团队的解决方案涉及改变电解质,即锂离子在阴极和阳极之间移动以实现充放电的液体。在锂金属电池中,电解液是一种由溶解在溶剂中的含锂盐组成的液体。循环寿命短问题的根源在于,在最初的几个循环中,电解液无法在阳极表面形成足够的保护层。这层保护层也称为固态电解质间相(SEI),就像一个守护者,允许锂离子自由进出阳极,分别为电池充电和放电。含氟阳离子电解液的锂金属电池设计(中间为原子结构)界面"区域代表阳极表面和阴极表面形成的含氟层。资料来源:阿贡国家实验室研究小组发现了一种新的氟化物溶剂,它能在数百次循环中保持坚固的保护层。它将一种带正电荷(阳离子)的氟化成分与另一种带负电荷(阴离子)的氟化成分结合在一起。这种组合就是科学家们所说的离子液体--一种由正离子和负离子组成的液体。Zhang说:"我们的新型电解质的关键区别在于,在离子液体阳离子部分的环状结构中,用氟取代了氢原子。"这对于在锂金属电池测试中保持数百次循环的高性能而言,是最重要的区别"。为了更好地理解这种原子尺度差异背后的机理,研究小组利用了能源部科学办公室用户设施阿贡领导计算设施(ALCF)的高性能计算资源。正如Zhang所解释的,在ALCF的Theta超级计算机上进行的模拟显示,在充放电循环开始之前,氟阳离子都会粘附并积聚在阳极和阴极表面。然后,在循环的早期阶段,会形成一个弹性SEI层,其效果优于以前的电解液。阿贡和西北太平洋国家实验室的高分辨率电子显微镜显示,阳极和阴极上的高保护性SEI层导致了稳定的循环。研究小组能够调整氟化物溶剂与锂盐的比例,以形成具有最佳特性的层,包括不会太厚或太薄的SEI厚度。有了这层电解质,锂离子就能在数百次充放电过程中有效地进出电极。该团队的新型电解质还具有许多其他优点。它成本低,因为只需一个简单步骤就能制造出纯度和产量极高的电解质,而无需多个步骤。它环保,因为它使用的溶剂更少,而溶剂具有挥发性,会向环境释放污染物。而且由于它不易燃,因此更加安全。"使用我们的氟化阳离子电解质的锂金属电池可以大大促进电动汽车行业的发展,"Zhang说。"这种电解质的用途无疑还可以扩展到锂离子电池以外的其他类型的先进电池系统。...PC版:https://www.cnbeta.com.tw/articles/soft/1381579.htm手机版:https://m.cnbeta.com.tw/view/1381579.htm

相关推荐

封面图片

科学家们开发出了一种用于锂离子电池的超低浓度电解质

科学家们开发出了一种用于锂离子电池的超低浓度电解质锂离子电池(LIB)为智能手机和平板电脑提供电力,驱动电动汽车,并在发电厂储存电力。大多数锂离子电池的主要成分是锂钴氧化物(LCO)阴极、石墨阳极以及为阴极和阳极的解耦反应提供移动离子的液态电解质。这些电解质决定了电极上形成的相间层的性质,从而影响电池循环性能等特性。然而,商用电解质大多仍基于30多年前配制的系统:1.0至1.2摩尔/升六氟磷酸锂(LiPF6)在羧酸酯("碳酸溶剂")中的溶液。在过去的十年中,高浓度电解质(>3mol/L)得到了发展,它们有利于形成坚固的无机主导相间层,从而提高了电池性能。然而,这些电解质粘度高、润湿能力差、导电性差。由于需要大量的锂盐,这些电解质的价格也非常昂贵,而这往往是影响可行性的一个关键参数。为了降低成本,超低浓度电解质(<0.3mol/L)的研究也已开始。这些电解质的缺点是,电池电池分解的溶剂多于少量的盐阴离子,从而导致有机物占主导地位,相间层的稳定性较差。由宁波大学(中国)和波多黎各大学里奥皮德拉斯校区(美国)的袁金良、夏岚和吴先勇领导的研究小组现已开发出一种超低浓度电解质,可能适用于锂离子电池的实际应用:LiDFOB/EC-DMC。LiDFOB(二氟草酸硼酸锂)是一种常见的添加剂,价格比LiPF6便宜得多。EC-DMC(碳酸乙酯/碳酸二甲酯)是一种商用碳酸酯溶剂。这种电解液的含盐量低至2重量百分比(0.16摩尔/升),但离子电导率却高达4.6mS/cm,足以使电池正常工作。此外,DFOB-阴离子的特性还能在LCO和石墨电极上形成以无机物为主的坚固相间层,从而在半电池和全电池中实现出色的循环稳定性。目前使用的LiPF6会在潮湿环境中分解,释放出剧毒和腐蚀性的氟化氢气体(HF),而LiDFOB则对水和空气稳定。使用LiDFOB的LIB不需要严格的干燥室条件,而可以在环境条件下制造,这又是一个节约成本的特点。此外,回收问题也会大大减少,从而提高可持续性。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1428465.htm手机版:https://m.cnbeta.com.tw/view/1428465.htm

封面图片

人工固态电解质层(ASEI)的发明有望在未来全面提高电池的功能和寿命

人工固态电解质层(ASEI)的发明有望在未来全面提高电池的功能和寿命金属锂因其能量密度优于其他材料而被选为电池阳极,这是一个明智的选择。然而,电极与电解液之间的界面存在挑战,这为在未来应用中实现更安全、更高效的性能提供了改进机会。金属锂阳极的挑战和解决方案清华大学的研究人员一开始热衷于用金属锂阳极取代石墨阳极,以构建能量密度更高的电池系统。然而,锂金属并不稳定,很容易与电解质发生反应,形成固体-电解质相(SEI)。遗憾的是,天然的SEI既脆又易碎,因此寿命和性能都很差。在此,研究人员研究了一种天然SEI的替代品,它可以有效缓解电池系统内的副反应。答案就是ASEI:人工固态电解质相。ASEI纠正了困扰裸锂金属阳极的一些问题,使其成为更安全、更可靠、甚至更强大的电源,可更放心地用于电动汽车和其他类似应用。研究成果的发表和意义9月25日,研究人员在《能源材料与器件》(EnergyMaterialsandDevices)杂志上发表了他们的研究成果。电池技术正在彻底改变我们的生活方式,与每个人的生活息息相关。为了实现真正的无碳经济,需要性能更好的电池来取代目前的锂离子电池。每个楔形层由不同的电极-电解质界面结构组成,有助于对锂金属电极进行实用的全面设计。资料来源:王艳艳,阿德莱德大学锂金属电池(LMB)就是这样一种候选电池。然而,阳极(金属锂)与电解质具有反应性,在电池运行过程中会在金属锂表面形成钝化层,即固体-电解质间相。锂金属阳极的另一个问题是电池充电时出现的所谓"枝晶生长"。枝晶看起来像树枝结构,会造成电池内部损坏,刺穿隔膜导致短路、性能不佳和潜在的安全隐患。这些弱点降低了锂金属电池板的实用性,并提出了一些必须解决的挑战。改进锂金属阳极的策略上文介绍了一些可用于制造更有效、更安全的锂金属阳极的策略。研究人员发现,要改进锂金属阳极,必须使锂离子分布均匀,这有助于减少电池负电荷区域的沉积物。这反过来又会减少枝晶的形成,从而防止过早衰变和短路。此外,在确保各层电绝缘的同时,为锂离子扩散提供更便捷的途径,有助于在电池循环过程中保持结构的物理和化学完整性。最重要的是,减少电极与电解液界面之间的应变可确保各层之间的适当连接,而这正是电池功能的重要组成部分。ASEI层的潜力和未来方向看来最有潜力的策略是聚合物ASEI层和无机-有机混合ASEI层。聚合物层在设计上有足够的可调节性,强度和弹性都很容易调节。聚合物层还具有与电解质相似的官能团,因此具有极高的兼容性;而这种兼容性正是其他元件所缺乏的主要方面之一。无机-有机混合层的最大优点是减少了层厚度,明显改善了层内成分的分布,从而提高了电池的整体性能。ASEI层的前景是光明的,但也需要一些改进。研究人员主要希望改善ASEI层在金属表面的附着力,从而全面提高电池的功能和寿命。需要注意的其他方面还有:层内结构和化学成分的稳定性,以及尽量减小层的厚度以提高金属电极的能量密度。一旦这些问题得到解决,改进型锂金属电池的前路就会一片光明。了解更多:https://doi.org/10.26599/EMD.2023.9370005...PC版:https://www.cnbeta.com.tw/articles/soft/1397963.htm手机版:https://m.cnbeta.com.tw/view/1397963.htm

封面图片

牛津大学的研究可能为电动汽车和航空业带来"改变游戏规则"的电池

牛津大学的研究可能为电动汽车和航空业带来"改变游戏规则"的电池牛津大学研究人员领导的一项新研究于6月7日发表在《自然》杂志上,这要归功于显着改进的电动汽车(EV)电池可能更近一步。使用先进的成像技术揭示了导致锂金属固态电池(Li-SSB)失效的机制。如果可以克服这些问题,使用锂金属阳极的固态电池可以在电动汽车电池续航里程、安全性和性能方面实现阶跃式改进,并有助于推动电动航空的发展。该研究的共同主要作者之一、牛津大学材料系博士生DominicMelvin表示:“用锂金属阳极开发固态电池是电池技术进步面临的最重要挑战之一。虽然今天的锂离子电池将继续改进,但对固态电池的研究有可能获得高回报和改变游戏规则的技术。”Li-SSB与其他电池不同,因为它们用固体电解质代替了传统电池中易燃的液体电解质,并使用锂金属作为阳极(负极)。固体电解质的使用提高了安全性,而锂金属的使用意味着可以储存更多的能量。然而,Li-SSB面临的一个关键挑战是,由于“枝晶”的生长,它们在充电时容易发生短路:锂金属细丝会穿透陶瓷电解质。作为法拉第研究所SOLBAT项目的一部分,牛津大学材料、化学和工程科学系的研究人员领导了一系列深入调查,以更多地了解这种短路是如何发生的。X射线计算机断层扫描图像显示充电过程中固态电池内锂枝晶裂纹的逐渐生长。图片来源:DominicMelvin,《自然》,2023年。在这项最新研究中,该小组在DiamondLightSource使用了一种称为X射线计算机断层扫描的先进成像技术,以前所未有的细节可视化充电过程中的枝晶引发的失效。新的成像研究表明,枝晶裂纹的萌生和传播是独立的过程,由不同的潜在机制驱动。当锂在次表层孔隙中积累时,枝晶裂纹就开始了。当孔变满时,电池的进一步充电会增加压力,导致破裂。相比之下,传播发生在锂仅部分填充裂缝的情况下,通过楔形开口机制驱动裂缝从后面打开。这种新的理解为克服Li-SSB的技术挑战指明了方向。DominicMelvin说:“例如,虽然锂阳极的压力可以很好地避免放电时在与固体电解质的界面处形成间隙,但我们的结果表明,压力过大可能是有害的,使枝晶生长和短路更有可能充电。”WolfsonChair、牛津大学材料学教授、法拉第研究所首席科学家、该研究的通讯作者彼得·布鲁斯爵士说:“锂等软金属穿透高密度硬陶瓷的过程事实证明,电解质具有挑战性,世界各地的优秀科学家做出了许多重要贡献。我们希望我们获得的额外见解将有助于固态电池研究朝着实用设备的方向发展。”根据法拉第研究所最近的一份报告,到2040年,SSB可以满足全球消费电子产品电池需求的50%、交通运输领域的30%和飞机的10%以上的需求。法拉第研究所首席执行官PamThomas教授说:“SOLBAT研究人员继续发展对固态电池失效的机理理解——这是在汽车应用中实现具有商业相关性能的高功率电池之前需要克服的一个障碍。该项目正在告知电池制造商可能用来避免该技术电池故障的策略。这项以应用为灵感的研究是法拉第研究所旨在推动的科学进步类型的一个典型例子。”...PC版:https://www.cnbeta.com.tw/articles/soft/1365985.htm手机版:https://m.cnbeta.com.tw/view/1365985.htm

封面图片

采用新型电沉积方法的全固态电池技术取得突破

采用新型电沉积方法的全固态电池技术取得突破通过底部电沉积机制稳定锂金属阳极全固态电池的示意图。资料来源:POSTECH应对电池安全挑战在电动汽车和储能系统等各种应用中,二次电池通常依赖于液态电解质。然而,液态电解质的易燃性带来了火灾风险。这促使人们不断努力探索在全固态电池中使用固态电解质和金属锂(Li),从而提供更安全的选择。在全固态电池的运行过程中,锂被镀在阳极上,利用电子的运动产生电力。在充电和放电过程中,锂金属会经历失去电子、转化为离子、重新获得电子和电沉积回金属形态的循环过程。然而,锂的任意电沉积会迅速耗尽可用的锂,导致电池的性能和耐用性大幅降低。阳极保护的创新为解决这一问题,研究团队与浦项制铁N.EX.THub合作开发了一种由功能粘合剂(PVA-g-PAA)[2]组成的全固态电池阳极保护层。该层具有优异的锂转移特性,可防止随机电沉积并促进"底部电沉积"过程。这可确保锂从阳极表面底部均匀沉积。研究小组利用扫描电子显微镜(SEM)进行了分析,证实了锂离子的稳定电沉积和分离[3]。这大大减少了不必要的锂消耗。研究小组开发的全固态电池还证明,即使锂金属薄至10微米(μm)或更薄,也能长时间保持稳定的电化学性能。领导这项研究的SoojinPark教授表达了他的承诺,他说:"我们通过一种新颖的电沉积策略设计出了一种持久的全固态电池系统。通过进一步研究,我们的目标是提供更有效的方法来提高电池寿命和能量密度。在合作研究成果的基础上,浦项制铁控股公司计划推进锂金属阳极的商业化,这是下一代二次电池的核心材料。"说明电沉积通过电解液中的电流将金属沉积到浸没在电解液中的电极上的方法PVA-g-PAA聚(乙烯醇)-接枝-聚(丙烯酸)脱离脱离或分离,金属锂失去电子并转化为锂离子的现象编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1424772.htm手机版:https://m.cnbeta.com.tw/view/1424772.htm

封面图片

新型电池技术终将改善电动汽车在极端天气下的性能

新型电池技术终将改善电动汽车在极端天气下的性能改善寒冷天气下充电时间的一种方法是改进电解质,使其同时具有高离子电导率、低溶解能和低熔点,并形成阴离子衍生的无机相。中国浙江大学教授范秀林领导的研究团队刚刚在《自然》杂志上发表了一篇论文,详细介绍了如何做到这一点,此举可能会产生深远影响,使电动汽车在极端天气下更加实用。研究人员认为,改善电解质质量的最佳方法之一是使用溶解能低的小型溶剂,这种溶剂可以改变锂离子在电解质中的移动方式,从而提高电导率并加快充电速度。为此,研究人员使用了一种名为氟乙腈(FAN)的溶剂,他们认为这种溶剂能使锂离子电池同时实现高能量密度、快速充电和宽工作温度范围。值得注意的是,这并不是研究人员第一次尝试解决金属离子电池在极端天气下的问题。几年前,加利福尼亚大学圣迭戈分校的材料科学家兼工程师ZhengChen和他的同事发表了一篇论文,介绍了一种新型电解质,他们声称这种电解质在极端天气下(从零下40华氏度(摄氏零下40度)到122华氏度(摄氏50度))比目前的解决方案效果更好。近年来,电动汽车越来越受欢迎,但由于种种原因,绝大多数购车者仍然选择传统的内燃机汽车(ICE)。大多数传统车主认为,充电时间过长是他们决定不购买电动汽车的主要原因,但关于汽车在恶劣天气下发生故障的恐怖故事也不利于向电动汽车过渡。尽管上述有关新型电解质的研究对整个电动汽车行业来说是一个巨大的利好消息,但特斯拉和Rivian等公司都希望这些新型电解质能够在不久的将来实用到实际的电动汽车电池中。如果实现了这一目标,必将提高电池的耐久性,降低极端天气下的充电速度,使电动汽车在寒冷条件下比以往任何时候都更加实用。...PC版:https://www.cnbeta.com.tw/articles/soft/1422012.htm手机版:https://m.cnbeta.com.tw/view/1422012.htm

封面图片

新的充电算法可将锂离子电池的寿命延长一倍

新的充电算法可将锂离子电池的寿命延长一倍柏林亥姆霍兹中心(HZB)和柏林洪堡大学的一个欧洲研究小组开发出一种替代充电方案,使锂离子电池的寿命比现在更长。研究结果表明,通过改变充电器向电解质材料输送电流的方式,电池在经过数百次放电-充电循环后仍能保持较高的能量容量。锂离子电池是一种结构紧凑、坚固耐用的能源容器,已成为人们的宠儿。电动汽车和电子设备都依赖于它们,但随着电解质穿过分隔阳极和阴极的薄膜,它们的容量会逐渐降低。目前最好的商业级锂离子电池使用的电极由一种名为NMC532的化合物和石墨制成,使用寿命长达8年。传统的充电方式是使用恒定电流(CC)的外部电能。研究分析了使用CC充电时电池样品的情况,发现阳极的固体电解质界面(SEI)"明显变厚"。此外,他们还在NMC532和石墨电极结构中发现了更多裂纹。较厚的SEI和电极上较多的裂缝意味着锂离子电池容量的显著损失。因此,研究人员开发了一种基于脉冲电流(PC)的充电协议。使用新的PC协议对电池充电后,研究小组发现SEI接口变薄了很多,电极材料发生的结构变化也更少。研究小组利用欧洲两个领先的粒子加速同步加速器设施"BESSYII"和"PETRAIII"进行了脉冲电流充电实验。他们发现,PC充电可促进石墨中锂离子的"均匀分布",从而减少石墨颗粒中的机械应力和裂纹。该方案还能抑制NMC532阴极的结构退化。研究表明,方波电流的高频脉冲效果最好。测试表明,PC充电可使商用锂离子电池的使用寿命延长一倍,容量保持率达到80%。这项研究的共同作者、柏林工业大学教授JuliaKowal博士说:"脉冲充电可以在电极材料和界面的稳定性方面带来许多优势,并大大延长电池的使用寿命。"...PC版:https://www.cnbeta.com.tw/articles/soft/1427548.htm手机版:https://m.cnbeta.com.tw/view/1427548.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人