天体物理学家测量物质、暗物质和暗能量的总量

天体物理学家测量物质、暗物质和暗能量的总量第一作者、日本千叶大学埃及国家天文和地球物理研究所研究员穆罕默德-阿卜杜拉博士解释说:"宇宙学家认为,总物质中只有约20%是由常规物质或'重子'物质构成的,其中包括恒星、星系、原子和生命。"大约80%是由暗物质构成的,暗物质的神秘性质尚不清楚,但可能由一些尚未发现的亚原子粒子组成。(见图)。""研究小组使用了一种行之有效的技术来确定宇宙中的物质总量,即把观测到的单位体积内星系团的数量和质量与数值模拟的预测结果进行比较,"合著者、阿卜杜拉的前研究生导师、加州大学默塞德分校物理学教授兼研究、创新和经济发展副校长吉莉安-威尔逊(GillianWilson)说。"目前观测到的星团数量,也就是所谓的'星团丰度',对宇宙学条件,尤其是物质总量非常敏感"。图1.就像"金发姑娘"一样,研究小组将测量到的星系团数量与数值模拟的预测进行比较,以确定哪个答案"恰到好处"。资料来源:穆罕默德-阿卜杜拉(埃及国家天文和地球物理研究所/日本千叶大学)弗吉尼亚大学的阿纳托利-克莱平(AnatolyKlypin)说:"宇宙中总物质的比例越高,就会形成越多的星团。但要精确测量任何星系团的质量都很困难,因为大部分物质都是暗物质,我们无法用望远镜直接看到。"为了克服这一困难,研究小组不得不使用一种间接的星系团质量追踪器。他们所依赖的事实是,质量较大的星团比质量较小的星团包含更多的星系(质量富集度关系:MRR)。由于星系由发光的恒星组成,因此可以利用每个星团中星系的数量来间接确定其总质量。通过测量斯隆数字巡天观测样本中每个星团的星系数量,研究小组能够估算出每个星团的总质量。然后,他们将观测到的单位体积星系团的数量和质量与数值模拟的预测值进行了比较。观测结果与模拟结果的最佳拟合值是宇宙由31%的总物质组成,这一数值与普朗克卫星的宇宙微波背景(CMB)观测结果非常吻合。值得注意的是,CMB是一种完全独立的技术。验证与技术千叶大学的石山智明(TomoakiIshiyama)说:"我们首次利用MRR成功地测量了物质密度,这与普朗克团队利用CMB方法获得的结果非常吻合。这项工作进一步证明,星团丰度是约束宇宙学参数的一项有竞争力的技术,也是对CMB各向异性、重子声振荡、Ia型超新星或引力透镜等非星团技术的补充。"研究小组认为,他们的成果是首次成功利用光谱学(将辐射分离成各个波段或颜色的光谱的技术)来精确确定每个星团的距离,以及与星团有引力约束的真正成员星系,而不是视线沿线的背景或前景干扰者。以前尝试使用MRR技术的研究则依赖于粗糙得多和精确度较低的成像技术,例如使用在某些波长下拍摄的天空照片,来确定每个星团和附近真正成员星系的距离。结论和未来应用这篇发表在9月13日《天体物理学报》上的论文不仅证明了MRR技术是确定宇宙学参数的强大工具,而且还解释了如何将它应用于大型、宽视场和深视场成像以及光谱星系巡天(如斯巴鲁望远镜、暗能量巡天、暗能量光谱仪、欧几里得望远镜、eROSITA望远镜和詹姆斯-韦伯太空望远镜等进行的巡天)所获得的新数据集。...PC版:https://www.cnbeta.com.tw/articles/soft/1385143.htm手机版:https://m.cnbeta.com.tw/view/1385143.htm

相关推荐

封面图片

韦伯之谜解开了天体物理学家解释宇宙黎明时的"不可能"亮度

韦伯之谜解开了天体物理学家解释宇宙黎明时的"不可能"亮度强烈的闪光,而不是质量,解决了不可能的亮度之谜。当科学家们看到詹姆斯-韦伯太空望远镜(JWST)拍摄的第一批宇宙最早星系的图像时,他们感到非常震惊。这些年轻的星系看起来太亮、太大、太成熟,不可能在宇宙大爆炸后这么快就形成。这就好比一个婴儿在短短几年内就长成了大人。这一惊人的发现甚至引起了一些物理学家对宇宙学标准模型的质疑,怀疑它是否应该被颠覆。银河系亮度与质量美国西北大学领导的天体物理学家小组利用新的模拟方法发现,这些星系的质量可能并没有那么大。虽然星系的亮度通常是由其质量决定的,但新的发现表明,质量较小的星系也能因不规则、灿烂的恒星形成爆发而发出同样明亮的光芒。这一发现不仅解释了为什么年轻的星系看起来具有欺骗性的质量,而且也符合宇宙学的标准模型。这项研究发表在10月3日的《天体物理学杂志通讯》(AstrophysicalJournalLetters)上。艺术家构想的早期星爆星系。该图像是根据用于这项研究的FIRE模拟数据绘制的,可以解释JWST最近的研究结果。恒星和星系显示为明亮的白色光点,而较分散的暗物质和气体则显示为紫色和红色。资料来源:AaronM.Geller,西北大学,CIERA+IT-RCDS西北大学的Claude-AndréFaucher-Giguère是这项研究的资深作者,他说:"这些星系的发现是一个巨大的惊喜,因为它们比预期的要亮得多。通常情况下,星系之所以明亮是因为它很大。但由于这些星系是在宇宙黎明时形成的,因此大爆炸后的时间还不够长。这些巨大的星系怎么会如此迅速地聚集在一起呢?我们的模拟结果表明,星系在宇宙黎明时形成这种亮度是没有问题的"。领导这项研究的孙国超补充说:"关键是要在短时间内在一个系统中再现足够数量的光。之所以会出现这种情况,要么是因为系统的质量非常大,要么是因为它有能力迅速产生大量的光。在后一种情况下,系统并不需要那么大的质量。如果恒星的形成是在爆发中发生的,它就会发出闪光。这就是我们看到几个非常明亮的星系的原因。"Faucher-Giguère是西北大学温伯格艺术与科学学院物理学和天文学副教授,也是天体物理学跨学科探索与研究中心(CIERA)的成员。Sun是西北大学CIERA的博士后研究员。了解宇宙黎明宇宙黎明是宇宙大爆炸后大约1亿年到10亿年的一段时期,其标志是宇宙中第一批恒星和星系的形成。在JWST进入太空之前,天文学家对这段古老的时期知之甚少。"JWST给我们带来了很多关于宇宙黎明的知识。在JWST出现之前,我们对早期宇宙的了解大多是根据极少数来源的数据推测出来的。随着观测能力的大幅提升,我们可以看到星系的物理细节,并利用这些确凿的观测证据来研究物理学,从而了解正在发生的事情。"在这项新研究中,Sun、Faucher-Giguère和他们的团队使用了先进的计算机模拟来模拟星系在大爆炸之后是如何形成的。模拟生成的宇宙黎明星系与JWST观测到的星系一样明亮。这些模拟是相对论环境反馈(FIRE)项目的一部分,Faucher-Giguère与加州理工学院、普林斯顿大学和加州大学圣地亚哥分校的合作者共同创立了该项目。这项新研究的合作者包括来自Flatiron研究所计算天体物理学中心、麻省理工学院和加州大学戴维斯分校的研究人员。FIRE模拟结合了天体物理学理论和先进的算法来模拟星系的形成。这些模型使研究人员能够探究星系是如何形成、成长和改变形状的,同时考虑到恒星返回的能量、质量、动量和化学元素。当Sun、Faucher-Giguère和他们的团队运行模拟来模拟宇宙黎明时形成的早期星系时,他们发现恒星是在爆发中形成的--这一概念被称为"爆发式恒星形成"。在像银河系这样的大质量星系中,恒星以稳定的速度形成,恒星的数量随着时间的推移逐渐增加。但是,当恒星以一种交替的模式形成时,就会出现所谓的爆发式恒星形成--一下子形成许多恒星,然后是数百万年的极少数新恒星,接着又形成许多恒星。"爆发式恒星形成在低质量星系中尤其常见,"Faucher-Giguère说。"为什么会出现这种情况的细节仍是正在进行的研究课题。但我们认为发生的情况是,恒星形成爆发,然后在几百万年后,这些恒星以超新星的形式爆炸。气体被踢出,然后又落回,形成新的恒星,推动恒星形成的循环。但是当星系的质量足够大时,它们的引力就会更强。当超新星爆炸时,它们的引力不足以把气体抛出星系。引力将星系凝聚在一起,使其进入稳定状态。"明亮的星系和宇宙模型模拟还能够产生与JWST所揭示的相同数量的明亮星系。换句话说,模拟预测的明亮星系数量与观测到的明亮星系数量相吻合。尽管其他天体物理学家也曾假设,爆发性恒星形成可能是宇宙黎明时星系异常明亮的原因,但西北大学的研究人员是第一个利用详细的计算机模拟来证明这是可能的。而且他们能够在不增加与我们的宇宙标准模型不一致的新因素的情况下做到这一点。Faucher-Giguère说:"星系中的大部分光线都来自质量最大的恒星。因为质量更大的恒星燃烧速度更快,所以寿命更短。它们在核反应中迅速耗尽燃料。因此,一个星系的亮度与它在过去几百万年中形成的恒星数量有更直接的关系,而不是与整个星系的质量有关。"...PC版:https://www.cnbeta.com.tw/articles/soft/1387989.htm手机版:https://m.cnbeta.com.tw/view/1387989.htm

封面图片

天体物理学家发现星系间的第一个气泡

天体物理学家发现星系间的第一个气泡一个模拟的可视化图描述了一个星系原簇周围大规模加热的情景,使用的是超级计算机模拟的数据。这被认为是与在COSTCO-I原生星团中观察到的情况类似。图片中心的黄色区域代表一个巨大的、热的气体团,横跨几百万光年。蓝色表示较冷的气体,它位于原生星团的外部区域,以及连接热气体和其他结构的丝状物。图像中的白点,即嵌入气体分布中的白点,是由恒星发出的光。资料来源:THREEHUNDRED合作组织宇宙中所有原子的绝大部分-大约90%可以在填补可见星系之间空间的星系间气体中找到。这种星系间介质目前处于高温和复杂的状态,温度从10万摄氏度到1000多万摄氏度不等,被研究人员称为"暖热星系间介质"(WHIM)。然而,在100多亿年前,当宇宙中的星系处于形成恒星的高峰期时,大多数星系间介质存在于相对较冷的温度,低于1万摄氏度,创造了一个更可预测和稳定的阶段。由KavliIPMU研究生ChenzeDong和项目助理教授Khee-GanLee领导的一个国际研究小组已经确定,在宇宙只有30亿年历史的时候,宇宙中最远的一片区域被加热到更具有今天WHIM的温度。这个区域是一个被称为"COSTCO-I"的巨大星系聚合体,一个总质量超过太阳质量400万亿倍的星系原簇,横跨几百万光年,也是由Lee和KavliIPMU的一个研究小组在2022年发现的。该图比较了在COSTCO-I星系原星团附近观察到的氢气吸收(上图),与计算机模拟计算出的原星团存在的预期吸收进行了比较。强烈的氢气吸收显示为红色,较低而弱的吸收显示为蓝色,而中间的吸收则表示为绿色或黄色。图中的黑点表示天文学家在该地区探测到的星系。在COSTCO-I的位置(其中心在两幅图中都标记为恒星),天文学家发现观察到的氢气吸收与该时代宇宙的平均值没有太大差别。这令人惊讶,因为人们期望在那个与观察到的高浓度星系相对应的区域中找到跨越数百万光年的扩展氢吸收。资料来源:Dong等人。尽管像这样的遥远宇宙中的星系原生簇经常被发现,但是当他们使用夏威夷茂纳凯亚的W.M.凯克天文台的10.3米直径的凯克-I望远镜检查覆盖COSTCO-I的紫外线光谱时,该团队发现了一些奇怪的现象。通常情况下,在121.6纳米的特定波长下,星系原生体的巨大质量和尺寸会投下一个巨大的阴影,这是由于与原生体气体相关的中性氢的吸收造成的,但是在COSTCO-I的位置没有发现吸收阴影。"我们对这一缺失感到惊讶,因为氢气吸收是搜索星系原生星团的常见方式之一,而COSTCO-I附近的其他原生星团确实显示出这种吸收信号",Dong说。没有中性氢跟踪原生星系团表明原生星系团中的气体必须被加热到可能比宇宙中那个时候的星系间介质预期的冷态高一百万度。如果我们把今天的星系间介质看作是一个巨大的宇宙炖品,它正在沸腾和起泡,那么COSTCO-I可能是天文学家在遥远的过去观察到的第一个气泡,而当时这个锅里的大部分东西仍然是冷的。WHIM的特性和起源仍然是目前天体物理学中最大的问题之一,能够瞥见WHIM的早期加热点之一将有助于揭示导致星系间气体沸腾成今天的泡沫的机制。这种情况的发生有几种可能性,但可能是由于气体在引力塌缩过程中相互碰撞而升温,或者巨大的射电喷流可能从原生星团内的超大质量黑洞中抽出能量。"COSTCO-I甚至在原生星团的演化方面也很有趣。天文学家通常在星系或星系间介质中寻找原生星团,以发现它们。然而,COSTCO-I却无法通过这些传统方法找到。未来的PFS调查将能够搜索到更多像COSTCO-I这样的原生星团,并揭示它们的演化过程,"共同作者、JSPS海外研究员RiekoMomose说。星系间介质代表着为星系提供原材料的气体库,而热气体与冷气体的行为方式不同,它们可以很容易地流入星系并形成恒星。能够直接研究早期宇宙中WHIM的成长,将使天文学家能够建立起星系形成的连贯性,以及为其提供能量的气体的生命周期。KavliIPMU的天文学家们目前正在大力参与为茂纳凯亚岛上的8.2米斯巴鲁望远镜开发一个强大的新的多物体光谱仪,即斯巴鲁主焦点光谱仪(PFS)。利用斯巴鲁PFS,天文学家将能够绘制出比目前的研究大40倍的体积,并研究数百个星系原簇的气体特性。...PC版:https://www.cnbeta.com.tw/articles/soft/1357073.htm手机版:https://m.cnbeta.com.tw/view/1357073.htm

封面图片

天体物理学家利用IACOB项目详细观测蓝超巨星

天体物理学家利用IACOB项目详细观测蓝超巨星恒星是星系乃至整个可观测宇宙的基本组成部分。在种类繁多的恒星中,质量超过太阳8倍的恒星被称为大质量恒星。它们强大的辐射和可怕的恒星风对周围的星际介质产生了重大影响。在这些恒星内部,形成了氢和氦以外的元素,在星系的化学变化中起着关键作用,并为生命的出现奠定了基础。此外,当这些恒星以超新星的形式终结时,它们会产生中子星和恒星质量的黑洞。所有这些都意味着它们的性质和演化对天体物理学至关重要。在这种情况下,"蓝超巨星"被用来定义那些处于生命中间阶段的大质量恒星,这是一个关键时期,可以被描述为"恒星青春期",它将决定恒星的余生和最终命运。鉴于这一演化阶段的复杂性,以往基于几十颗此类恒星样本的研究无法获得足够的信息来详细了解它们。英仙座h和xi双星团的图像,研究中的蓝超巨星用十字交叉表示,包括样本中的典型光谱。资料来源:AbeldeBurgosSierra(IAC)在发表的这项研究中,对地球周围6500光年范围内的约750颗蓝超巨星进行了观测,这使其成为迄今为止获得的最完整、质量最高的样本之一。为了进行这项研究,IAC的IACOB项目花费了15年的时间来获取高质量、高分辨率的大质量恒星光谱(这是恒星的指纹),其中包括对银河系中绝大多数蓝超巨星的详尽搜索。这些观测主要是利用拉帕尔马岛RoquedelosMuchachos天文台的NOT和Mercatort望远镜进行的。"对这一样本的分析,将使我们能够解决有关这些天体的演化性质和物理特性的一些问题,这些问题几十年来一直没有答案,因为它们与其他质量较小的恒星类型相比不太为人所知,尽管它们在现代天体物理学的许多领域都很重要。"IAC和ULL的研究员、文章的第一作者AbeldeBurgosSierra解释说。银河与样本中的蓝色超巨星叠加的图像。资料来源:DSS/AbeldeBurgosSierra(IAC)为了选择样本,我们使用了一种新的标记方法,这种方法是基于这些恒星光谱中一种易于识别的示踪剂(H-neta线的剖面形状)。通过简单的测量,这种新方法可以快速有效地识别特定温度和表面重力范围内的恒星。利用这种方法,研究人员无需使用复杂的恒星大气模型进行光谱分析的常规方法来推导这些数量。"当下一次大质量恒星光谱测量(如来自RoquedelosMuchachos的WEAVE-SCIP或来自智利LaSilla的4MIDABLE-LR)开始在未来五年内每晚观测银河系中成千上万颗恒星的光谱时,这对识别这类恒星将非常重要、"IACOB项目是一个由IAC领导的国际合作项目,其目标是建立一个有史以来最大的银河系大质量恒星光谱数据库。DeBurgos已经开始了他的博士论文工作,即获取750个蓝超巨星样本的物理参数(质量、温度、光度)和化学丰度(He、C、N、O、Si)的精确数据。因斯布鲁克大学研究员、文章合著者米格尔-乌尔班尼亚(MiguelA.Urbaneja)总结说:"这将有助于回答一些最有趣的未解之谜,让我们更好地了解大质量恒星的'青春期'。"...PC版:https://www.cnbeta.com.tw/articles/soft/1378061.htm手机版:https://m.cnbeta.com.tw/view/1378061.htm

封面图片

天体物理学家发现了宇宙的耳语 早期宇宙中最微弱的JD1星系

天体物理学家发现了宇宙的耳语早期宇宙中最微弱的JD1星系JD1星系的投影图(插图),它位于一个名为Abell2744的明亮星系团后面。GuidoRoberts-Borsani/UCLA);原始图像:NASA,ESA,CSA,SwinburneUniversityofTechnology,UniversityofPittsburgh,STScI在大爆炸之后,宇宙膨胀并冷却到足以让氢原子形成。由于没有来自第一批恒星和星系的光,宇宙进入了一个被称为宇宙黑暗时代的时期。第一批恒星和星系在几亿年后出现,并开始燃烧掉大爆炸留下的氢雾,使宇宙变得透明,就像今天这样。由加州大学洛杉矶分校的天体物理学家领导的研究人员证实了一个遥远的、微弱的星系的存在,该星系是那些光线烧穿氢原子的典型星系;这一发现应该有助于他们理解宇宙黑暗时代是如何结束的。由加利福尼亚大学洛杉矶分校(UCLA)天体物理学家领导的一个国际研究小组已经证实了早期宇宙中所见到的最微弱的星系的存在。这个被称为JD1的星系是迄今为止被确认的最遥远的星系之一,它是典型的那种烧穿大爆炸留下的氢原子雾的星系,让光线照亮宇宙并将其塑造为今天的样子。这一发现是利用美国宇航局的詹姆斯-韦伯太空望远镜进行的,其结果发表在《自然》杂志上。宇宙生命的头十亿年是其演变的关键时期。在大爆炸之后,大约138亿年前,宇宙膨胀并冷却到足以让氢原子形成。氢原子吸收来自年轻恒星的紫外线光子;然而,在第一批恒星和星系诞生之前,宇宙变得黑暗,进入了一个被称为宇宙黑暗时代的时期。几亿年后,第一批恒星和星系的出现使宇宙沐浴在充满活力的紫外线中,开始燃烧,或电离氢雾。这反过来又使光子能够穿越空间,使宇宙变得透明。确定在那个时代占主导地位的星系类型--被称为"离子化时代"--是今天天文学的一个主要目标,但是在韦伯望远镜开发之前,科学家们缺乏研究第一代星系所需的敏感的红外仪器。加州大学洛杉矶分校博士后研究员、该研究的第一作者GuidoRoberts-Borsani说:"迄今为止,用JWST发现的大多数星系都是明亮的星系,这些星系很罕见,而且不被认为特别能代表填充早期宇宙的年轻星系。因此,虽然很重要,但它们不被认为是烧掉所有氢雾的主要媒介。""另一方面,像JD1这样的超暗星系要多得多,这就是为什么我们相信它们更能代表进行再电离过程的星系,使紫外线在空间和时间中不受阻碍地传播。"JD1是如此的昏暗和遥远,以至于如果没有强大的望远镜--以及来自大自然的帮助,研究它是具有挑战性的。JD1位于附近一个名为Abell2744的大型星系团后面,这些星系团的综合引力弯曲并放大了来自JD1的光线,使得它看起来更大,比原来的亮度高13倍。这种效应被称为引力透镜,类似于放大镜如何扭曲和放大其视野内的光线;如果没有引力透镜,JD1可能会被错过。研究人员利用韦伯望远镜的近红外光谱仪NIRSpec获得了该星系的红外光谱,使他们能够确定它的精确年龄和与地球的距离,以及它在相对较短的寿命内形成的恒星数量和灰尘及重元素数量。该星系的引力放大和韦伯望远镜的另一个近红外仪器NIRCam的新图像相结合,也使研究小组有可能以前所未有的细节和分辨率研究该星系的结构,揭示了正在形成恒星的三个主要拉长的灰尘和气体团块。研究小组利用新的数据将JD1的光线追溯到它的原始来源和形状,揭示了一个紧凑的星系,其大小只是像银河系这样的老星系的一小部分,而银河系的年龄为136亿年。由于光线到达地球需要时间,所以JD1被看作是大约133亿年前的样子,当时宇宙的年龄只有现在的大约4%。"在韦伯望远镜开启之前,就在一年前,我们甚至无法梦想确认这样一个微弱的星系,"加州大学洛杉矶分校物理学和天文学教授、该研究的第二作者TommasoTreu说。"JWST和引力透镜的放大能力的结合是一场革命。我们正在改写关于星系如何在大爆炸后立即形成和演化的书"。...PC版:https://www.cnbeta.com.tw/articles/soft/1364163.htm手机版:https://m.cnbeta.com.tw/view/1364163.htm

封面图片

天体物理学家寻找第二近的超大质量黑洞 是太阳质量的300万倍

天体物理学家寻找第二近的超大质量黑洞是太阳质量的300万倍这个超大质量黑洞被标记为狮子座I*,这个是由独立的天文学家团队在2021年底首次提出的。该团队注意到恒星在接近星系中心时运行速度加快--这是黑洞的证据--但直接对黑洞的发射成像是不可能的。现在,CfA天体物理学家FabioPacucci和AviLoeb提出了一种验证超大质量黑洞存在的新方法。他们的工作被描述在最近发表在《天体物理学杂志》上的一项研究中。超微弱的银河系伴侣星系狮子座I出现在著名的亮星轩辕十四的右边,显示为一个微弱的斑块。资料来源:ScottAnttilaAnttlerApJLetters研究的主要作者FabioPacucci说:"黑洞是非常难以捉摸的物体,有时它们喜欢和我们玩捉迷藏。光线无法逃离它们的事件视界,但是它们周围的环境可以非常明亮--如果有足够的物质落入它们的引力井。但是,如果一个黑洞没有增殖质量,就不会发出任何光,并且变得无法用我们的望远镜找到。"这就是狮子座I*面临的挑战--一个矮小的星系,没有可用来增殖的气体,以至于它经常被描述为"化石"。那么,我们应该放弃观察它的任何希望吗?天文学家们说也许不是。Pacucci解释说:"在我们的研究中,从黑洞周围游荡的恒星中损失的少量质量可以提供观察它所需的增殖率。老恒星变得非常大,而且是红色的--我们称它们为红巨星。红巨星通常有强大的风,将其质量的一部分带到环境中。狮子座I*周围的空间似乎包含了足够多的这些古老的恒星,使它可以被观测到。"该研究的共同作者AviLoeb说:"观测狮子座I*的行动可能是突破性的。它将是继我们银河系中心的超大质量黑洞之后第二近的黑洞,其质量非常相似,但其所在的星系质量比银河系小一千倍。这一事实挑战了我们对星系及其中心超大质量黑洞如何共同演化的所有了解。这样一个超大的婴儿是如何从一个苗条的父母身上诞生的?"持续几十年的研究表明,大多数大质量星系的中心都有一个超大质量的黑洞,而黑洞的质量是其周围球状恒星总质量的十分之一。"在狮子座I的状态下,我们会期待一个小得多的黑洞。相反,狮子座I似乎包含一个质量为太阳几百万倍的黑洞,与银河系所承载的黑洞类似。这是令人激动的,因为当意外发生时,科学通常会取得最大的进展。"那么,我们什么时候可以期待一个黑洞的图像?"我们还没有到那一步,"Pacucci说。"狮子座I*正在玩捉迷藏,但它发出的辐射太多,无法长期保持不被发现。"该团队已经在太空中的钱德拉X射线天文台和新墨西哥州的甚大阵射电望远镜上获得了望远镜时间,目前正在分析新数据。...PC版:https://www.cnbeta.com.tw/articles/soft/1336001.htm手机版:https://m.cnbeta.com.tw/view/1336001.htm

封面图片

天体物理学家发现新的引力波探测方法 探索宇宙最深处的奥秘

天体物理学家发现新的引力波探测方法探索宇宙最深处的奥秘科大物理系刘教授团队提出的突破性概念,可让地球磁层中的单个天文望远镜成为全球变暖信号的探测器。资料来源:香港科技大学在香港科技大学物理系副教授刘涛教授的领导下,研究小组的创新方法可以利用行星磁层中现有的、技术上可行的天文望远镜成功探测高频引力波。这将为以有效和技术可行的方式研究早期宇宙和剧烈宇宙事件开辟新的可能性。引力波(GW)由各种天文现象产生,如早期宇宙的相变和原始黑洞的碰撞。然而,引力波的影响极其微弱,目前只能通过干涉测量法在相对较低的频段发现引力波。因此,利用全球升温潜能值观测宇宙面临着巨大的技术挑战,特别是在探测一千赫以上的高频段时,干涉测量法的使用受到很大限制。为了解决这一难题,刘涛教授和他的博士后研究员张晨博士与中国科学院高能物理研究所的任静研究员合作,在最近的研究中取得了重大突破。这项研究利用了一个有趣的物理效应:驻留在磁场中的全球瓦可以转化为潜在的可探测电磁波。通过利用行星磁层内的延伸路径,转换效率得以提高,从而产生更多的电磁波信号。对于具有宽视场的望远镜来说,由于这种行星实验室内的信号通量具有广阔的角度分布,因此探测能力可以得到进一步提高。这种创新方法可使单个天文望远镜充当全球变暖信号的探测器。通过组合多个望远镜,可以实现高频全球变暖频率的广泛覆盖,从兆赫兹到1028赫兹不等。这一频率范围相当于天文观测中使用的电磁波谱,其中有很大一部分是以前在探测GW时从未探索过的。这项研究对低地球轨道卫星探测器和木星磁层内正在进行的任务的灵敏度进行了初步评估。这项研究发表在今年3月的《物理评论快报》上,随后,《自然-天文学》在5月发表了一篇题为"行星大小的实验室提供了宇宙学见解"的文章,重点介绍了这项研究。这强调了这项研究在为未来新型全球变暖探测技术研究铺平道路方面的重要意义。编译来源:ScitechDailyDOI:10.1103/PhysRevLett.132.131402DOI:10.1038/s41550-024-02285-w...PC版:https://www.cnbeta.com.tw/articles/soft/1433772.htm手机版:https://m.cnbeta.com.tw/view/1433772.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人