低功耗海水淡化技术可为灾区及时提供饮用水

低功耗海水淡化技术可为灾区及时提供饮用水目前,最常用的海水淡化方法是反渗透法。简而言之,它的工作原理是迫使海水通过一层可渗透的膜,这层膜允许水分子通过,但不允许盐(氯化钠)分子通过。这是一个有效的过程,但也需要相当大的能量才能产生所需的推水压。此外,膜最终会被捕获的盐堵塞,必须更换。由英国巴斯大学、斯旺西大学和爱丁堡大学的科学家们开发的一种实验性新系统完全不利用压力。相反,它在一个容器的一端装有一个带正电的电极,另一端装有一个带负电的电极,两者之间有一层多孔膜。当海水被放入其中时,盐分子中带正电荷的钠离子会被吸入带负电荷的电极,而带负电荷的氯离子则会被吸入带正电荷的电极。当氯离子穿过薄膜向正极移动时,也会推动水(H2O)分子穿过薄膜。钠离子被负电极吸引,留在了膜的原来一侧。然后,氯离子被循环回这一侧,这样它们就能推动更多的水分子通过。最终,大部分的水都流到了膜的正电极一侧,完全不含盐。到目前为止,该系统只在每次几毫升的水中进行过测试。因此,研究人员正在寻找合作伙伴,帮助开发这项技术,使其能够处理一升水,这样他们就能更好地了解实用系统需要多少电力。首席科学家、巴斯大学的弗兰克-马肯(FrankMarken)教授说:"目前,反渗透法耗电量非常大,需要一个专门的发电厂来淡化水,这意味着它很难在较小的规模上实现。我们的方法可以在较小规模上提供一种替代解决方案,由于可以提取水而不产生任何副产品,这将节省能源,而且不涉及工业规模的加工厂"。这项研究的论文发表在最近出版的《ACS应用材料与界面》(ACSAppliedMaterialsandInterfaces)杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1385605.htm手机版:https://m.cnbeta.com.tw/view/1385605.htm

相关推荐

封面图片

新设计的太阳能海水淡化系统可快速生产饮用水 且不易堵塞

新设计的太阳能海水淡化系统可快速生产饮用水且不易堵塞研究人员开发出一种新型太阳能海水淡化系统,可生产大量饮用水,并采用一种受海洋启发的技术来避免盐堵塞问题。扩大规模后,该系统可提供足够的饮用水,满足一个小家庭的日常需要。研究人员的新系统改进了他们之前的设计,这种类似的概念由称为"阶段"的多层组成。每个阶段都包含一个蒸发器和一个冷凝器,利用阳光被动地将盐分从进水中分离出来。虽然它能有效地利用太阳能蒸发水,但由于盐分积累,几天后就会堵塞。于是,研究人员尝试了一种温盐环流的方式来缓解盐分的积累。新设计的单级装置看起来像一个薄薄的盒子,顶部是一种能吸收太阳热量的深色材料。盒子内部分为上下两部分。水流过上半部分,天花板上有一层蒸发器,利用太阳热量加热和蒸发直接接触到的水。水蒸气被输送到下半部,冷凝器层将水蒸气空气冷却成无盐的饮用水。整个箱体是倾斜的,再加上来自阳光的热能,使水流过时产生漩涡。这种运动有助于使水与上层蒸发层接触,同时保持盐的循环,防止盐沉淀和堵塞。太阳能海水淡化系统工作原理示意图该研究的通讯作者之一徐振元(音译)说:"我们现在引入了一种更强大的对流,它类似于我们通常在海洋中看到的千米长尺度的对流。海水暴露在空气中时,阳光会促使海水蒸发。一旦海水离开海面,盐分就会残留下来。盐的浓度越高,液体的密度就越大,这种较重的水就会向下流动。通过在[一个]小盒子中模拟这种千米范围内的现象,我们可以利用这一特点来排斥盐分。"研究人员发现,他们的系统能在不同盐浓度的环境中产生淡水,从天然海水到盐度高出七倍的水。他们说,如果将该系统放大到一个小手提箱大小,每小时可生产4至6升(1.1至1.6加仑)水,并可持续使用数年,然后才需要更换部件。研究人员说,由于该系统的产水率高,盐排斥率高,使用寿命长,而且是太阳能供电,不需要电力,因此运行该系统的总体成本将比美国生产自来水的成本更低。研究报告的共同作者杨忠说:"我们的研究表明,这种设备能够实现较长的使用寿命。这意味着,利用阳光生产的饮用水首次有可能比自来水便宜。这为太阳能海水淡化解决现实问题提供了可能。"这项研究发表在《焦耳》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1387925.htm手机版:https://m.cnbeta.com.tw/view/1387925.htm

封面图片

创新系统可扬长避短 将海水转化为氢燃料

创新系统可扬长避短将海水转化为氢燃料他们的创新设计被证明成功地产生了氢气,而同时没有产生大量的有害副产品。他们的研究结果最近发表在《焦耳》杂志上,可以帮助推进生产低碳燃料的努力。"今天许多水变氢系统试图使用单层或单层膜。我们的研究将两层膜结合在一起,"SLAC-斯坦福联合研究所SUNCAT界面科学和催化中心的副研究员AdamNielander说。"这些膜结构使我们能够在实验中控制海水中离子的移动方式。"氢气是一种低碳燃料,目前被用于许多方面,例如运行燃料电池电动汽车,以及作为一种长期的能源储存选择--一种适合储存几周、几个月或更长的能源,可用于电网。许多制造氢气的尝试从淡化水开始,但这些方法可能是昂贵的,而且是能源密集型的。处理过的水更容易操作,因为它有更少的化学元素漂浮在周围。然而,研究人员说,净化水过程是昂贵的,需要大量能源并增加了设备的复杂性。另一种选择,即天然淡水也包含一些对现代技术来说有问题的杂质,此外,它还是地球上一种比较有限的资源。为了使用海水,该团队实施了一个双极或两层的膜系统,并使用电解进行测试,这是一种利用电力驱动离子或带电元素来运行所需反应的方法。SLAC和斯坦福大学的博士后研究员JosephPerryman说,他们的设计从控制对海水系统最有害的元素--氯化物开始。Perryman说:"海水中有许多活性物种可以干扰水到氢气的反应,而使海水变咸的氯化钠是主要的罪魁祸首之一。特别是,到达阳极并氧化的氯化物将减少电解系统的寿命,并且由于氧化产物的毒性,包括分子氯和漂白剂,实际上可能变得不安全。"实验中的双极膜允许进入制造氢气所需的条件,并减轻氯气进入反应中心的影响。理想的膜系统将执行三个主要功能:从海水中分离氢气和氧气;只帮助移动有用的氢气和氢氧根离子,同时限制其他海水离子;以及帮助防止不希望发生的反应。把这三者结合起来是很难的,该团队的研究目标是探索能够有效结合这三种需求的系统。具体到他们的实验中,质子,也就是正氢离子,通过其中一个膜层到达一个地方,在那里它们可以被收集,并通过与一个带负电的电极相互作用变成氢气。系统中的第二层膜只允许负离子,如氯化物,通过。斯坦福大学化学工程系研究生和共同作者DanielaMarin说,作为额外的后盾,一个膜层包含固定在膜上的带负电的基团,这使得其他带负电的离子,如氯化物,更难移动到它们不应该去的地方。事实证明,在该团队的实验中,带负电荷的膜能高效地阻挡几乎所有的氯离子,而且他们的系统在运行时不会产生漂白剂和氯气等有毒副产品。研究人员说,除了设计一个海水到氢气的膜系统外,这项研究还提供了一个关于海水离子如何通过膜移动的更好的一般理解。这些知识可以帮助科学家为其他应用设计更强大的膜,例如生产氧气。"对于使用电解法生产氧气也有一些兴趣,"Marin说。"了解我们的双极膜系统中的离子流和转换对于这项工作也是至关重要的。在我们的实验中生产氢气的同时,我们还展示了如何使用双极膜来产生氧气。"接下来,该团队计划通过使用更丰富和更容易开采的材料来改进他们的电极和膜。该团队说,这种设计改进可以使电解系统更容易扩展到为能源密集型活动(如交通部门)产生氢气所需的规模。研究人员还希望将他们的电解池带到SLAC的斯坦福同步辐射光源(SSRL),在那里他们可以利用该设施的强烈X射线研究催化剂和膜的原子结构。"绿色氢气技术的前景是光明的,"SLAC和斯坦福大学教授兼SUNCAT主任ThomasJaramillo说。"我们正在获得的基本见解是为未来创新提供信息的关键,以提高该技术的性能、耐久性和可扩展性。"...PC版:https://www.cnbeta.com.tw/articles/soft/1362511.htm手机版:https://m.cnbeta.com.tw/view/1362511.htm

封面图片

酸性涂层将普通电解器转化为可以直接分离海水

酸性涂层将普通电解器转化为可以直接分离海水该团队说,一个典型的电解器催化剂可能是由氧化钴制成的,其表面有氧化铬。海水通常会通过氯离子的严重侵蚀破坏这些催化剂,或者不溶性的镁和钙的沉淀物将其污染,这些沉淀物会堆积并堵塞电极。但是,在催化剂上添加刘易斯酸层,似乎能够从海水中捕获足够的带负电荷的羟基阴离子,在催化剂周围产生一个pH值为14的强碱性环境,阻止氯离子对催化剂的攻击和电极上沉淀物的形成。研究人员表示,他们以近100%的效率将天然海水分成氧气和氢气,通过电解生产绿色氢气,在商业电解器中使用非贵重的廉价催化剂。使用催化剂在海水中运行的商业电解器的性能接近于在高度净化的去离子水原料中运行的铂/铱催化剂的性能。展望未来几十年,有两件事似乎很清楚:对绿色氢气的需求将非常大,而预计到2025年将影响世界三分之二人口的淡水缺乏问题将变得更加严重。但是,如果绿色氢气可以用海水大量制造,那么在任何地方使用,无论是在燃料电池中还是在燃烧过程中,它最终都会与氧气结合,并作为淡水释放回环境中,这同时也是一个具有清洁能源奖励的脱盐过程。该团队表示,它正在努力将这套电解器系统扩大到商业规模,并寻找工业伙伴将其投入生产。该论文发表在《自然-能源》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1342313.htm手机版:https://m.cnbeta.com.tw/view/1342313.htm

封面图片

科学家设计近海水蒸气捕捉装置 以从海洋空气中采集城市饮用水

科学家设计近海水蒸气捕捉装置以从海洋空气中采集城市饮用水水资源匮乏是一个持续存在的问题,随着气候变化使干旱地区变得更加干燥,这个问题预计只会越来越严重。海洋拥有地球上所有水的96%,是一个巨大的潜在水库,但由于其产生的有毒废水,海水淡化是一个棘手的前景,难以扩大规模。但是自然界已经有了一个相当有效的海水淡化系统--太阳不断地加热海洋表面,将水蒸发出来,当然,这些水会继续变成雨水。在一项新的研究中,UIUC团队设计了一种可能利用这一资源的方法。该团队建议,可以在离岸几公里的地方建立一种水蒸气收集与提取结构,从海洋表面上方捕获富含水蒸气的空气。然后,这些空气可以通过管道回到陆地,并在另一个装置中凝结。然后,这些淡水可以被用于饮用、农业或其他任何地区需要的用途。据科学家们说,整个系统可以由海上风电场和陆地上的太阳能电池板提供动力。研究人员评估了全球14个城市,包括阿布扎比、罗马、洛杉矶和巴塞罗那,分析了根据这些地方的离岸大气层可以提取多少水的可行性。这将涉及建立高100米(328英尺)、宽210米(690英尺)的水蒸气提取结构。根据他们的模型,科学家们发现这些设备每年可以产生376亿到783亿升的水,这取决于特定地点的条件。然后,研究小组根据每人每天300升水的假设用量,计算出需要多少个结构才能为每个城市的人口提供足够的水。由此可见,少则两个、多则10个单元就能为一个城市提供足够的水。该团队说,这个解决方案相当优雅,因为它基本上像自然界的水循环一样工作,区别在于水汽被引导到所需要的地方。虽然许多建议的饮用水源可能会随着气候变化的发展而变得不那么可行,但这一方案却可以做到表现稳定。该研究的共同作者AfeefaRahman说:"气候预测显示,海洋水汽通量只会随着时间的推移而增加,提供更多的淡水供应。因此,我们所提出的想法在气候变化下将是可行的。这为适应气候变化提供了一个急需的有效方法,特别是对生活在世界干旱和半干旱地区的弱势人群而言。"当然,这个想法仍然是疯狂的假设,但这是一个需要考虑的重要领域,进一步的研究可以进一步探索其可行性。该研究发表在《科学报告》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1336607.htm手机版:https://m.cnbeta.com.tw/view/1336607.htm

封面图片

新型纳米设备将海水转化为电能 利用海洋隐藏的能量

新型纳米设备将海水转化为电能利用海洋隐藏的能量伊利诺伊大学厄巴纳-香槟分校的一个研究小组在《纳米能源》(NanoEnergy)杂志上报告了一种纳米流体设备的设计,该设备能够将离子流转化为可用的电力。该团队认为,他们的装置可用于从海水-淡水边界的自然离子流中提取电能。"虽然我们的设计在现阶段还只是一个概念,但它用途广泛,已经显示出了能源应用的强大潜力,"项目负责人、伊利诺伊大学电气与计算机工程教授让-皮埃尔-勒伯顿说。"他说:"这个项目始于一个学术问题--'纳米级固态装置能否从离子流中提取能量?"利用盐水发电的纳米流体装置图。资料来源:伊利诺伊大学厄巴纳-香槟分校Grainger工程学院当两个盐度不同的水体相遇时,如河流注入海洋,盐分子会自然地从高浓度流向低浓度。这些流动的能量可以被收集起来,因为它们是由溶解盐形成的称为离子的带电粒子组成的。勒伯顿的研究小组设计了一种纳米级半导体器件,利用了器件中流动的离子与电荷之间的"库仑阻力"现象。当离子流经设备中的狭窄通道时,电场力会使设备中的电荷从一侧移动到另一侧,从而产生电压和电流。研究人员在模拟其装置时发现了两种令人惊讶的行为。首先,虽然他们预计库仑阻力主要是通过相反电荷之间的吸引力产生的,但模拟结果表明,如果电荷之间存在排斥力,该装置同样可以正常工作。带正电和负电的离子都会产生阻力。"同样值得注意的是,我们的研究表明存在放大效应,"勒伯顿研究小组的研究生、该研究的第一作者熊明业说。"由于运动的离子与设备电荷相比质量非常大,因此离子向电荷传递了大量的动量,从而放大了底层电流。"研究人员还发现,只要通道直径足够窄,以确保离子和电荷之间的距离,这些效应就与具体的通道配置以及材料选择无关。研究人员正在为他们的研究成果申请专利,他们正在研究如何将这些设备阵列扩展到实际发电中。"我们相信,设备阵列的功率密度可以达到或超过太阳能电池的功率密度,"勒伯顿说。"更不用说在生物医学传感和纳米流体等其他领域的潜在应用了。...PC版:https://www.cnbeta.com.tw/articles/soft/1399421.htm手机版:https://m.cnbeta.com.tw/view/1399421.htm

封面图片

突破性研究展示了通过纳米孔进行冷却的方法

突破性研究展示了通过纳米孔进行冷却的方法描述通过电荷选择性离子传输进行纳米孔冷却的示意图。资料来源:2023Tsutsui等人,《用于纳米流体设备热管理的珀尔帖冷却》,《设备》日本研究人员的一项突破性研究展示了通过纳米孔进行冷却的方法,彻底改变了微流控系统的温度控制,并加深了人们对细胞离子通道的了解。在最近发表于《设备》(Device)上的一项研究中,大阪大学科学与工业研究所(SANKEN)研究人员领导的研究小组表明,利用纳米孔--膜上的一个非常小的孔--作为只允许特定离子通过的通道,可以实现冷却。一般来说,用电驱动溶液中的离子会使带正电荷的离子和带负电荷的离子向相反的方向移动。因此,离子携带的热能是双向流动的。如果离子的路径被一层只有一个纳米孔的膜阻挡,那么就有可能控制离子的流动。例如,如果孔表面带负电荷,那么负离子就会与之相互作用而不是通过,只有正离子才会流动,并带走它们的能量。研究报告的第一作者MakusuTsutsui解释说:"在离子浓度较高的情况下,我们测量到温度随着电能的增加而升高。然而,在低浓度时,可用的负离子会与带负电的纳米孔壁相互作用。因此,只有带正电荷的离子通过纳米孔,温度也随之降低"。所展示的离子制冷可用于微流控系统的冷却,该系统用于移动、混合或研究极小体积的液体。这种系统在从微电子学到纳米医学的许多学科中都非常重要。此外,这些发现还有助于进一步了解离子通道,因为离子通道在细胞的精细平衡机制中发挥着至关重要的作用。这种洞察力可能是了解功能和疾病以及设计治疗方法的关键。研究的资深作者TomojiKawai说:"我们对研究结果的潜在影响之广感到兴奋。纳米孔材料有很大的定制空间,可以调整冷却效果。此外,还可以创建纳米孔阵列来放大效果。"该研究成果可增强的领域确实很多,包括利用温度梯度产生电动势。这可以应用于温度传感或蓝色能量采集。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1405089.htm手机版:https://m.cnbeta.com.tw/view/1405089.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人