科学家发现脊髓损伤后恢复功能活动的关键要素

科学家发现脊髓损伤后恢复功能活动的关键要素下胸椎脊髓再生突起投射到行走执行中心的全脊髓可视化,引导细胞到达天然靶区是功能恢复的关键。图片来源:EPFL/.Neurorestore在2018年发表于《自然》(Nature)的一项研究中,研究小组确定了一种治疗方法,这种方法能在啮齿动物脊髓损伤后触发轴突(连接神经细胞并使其能够进行交流的微小纤维)重新生长。但是,即使这种方法成功地使严重脊髓损伤的轴突再生,实现功能恢复仍然是一项重大挑战。在发表于《科学》(Science)杂志的这项新研究中,研究人员旨在确定,引导特定神经元亚群的轴突再生到它们的天然靶区,是否能使小鼠脊髓损伤后的功能得到有意义的恢复。他们首先利用先进的遗传分析方法,确定了部分脊髓损伤后能改善行走的神经细胞群。随后,研究人员发现,在没有特定引导的情况下,仅从这些神经细胞再生轴突穿过脊髓病变区对功能恢复没有影响。然而,当研究人员对这一策略进行改进,将化学信号用于吸引和引导这些轴突再生到腰部脊髓的天然目标区域时,在脊髓完全损伤的小鼠模型中观察到了行走能力的显著改善。这项新研究的资深作者、加州大学洛杉矶分校大卫-格芬医学院(DavidGeffenSchoolofMedicineatUCLA)神经生物学教授、医学博士MichaelSofroniew说:"我们的研究为轴突再生的复杂性和脊髓损伤后的功能恢复要求提供了重要的见解。这项研究强调,不仅有必要使轴突在病变部位再生,而且有必要积极引导轴突到达其自然目标区域,以实现有意义的神经功能恢复。"研究人员说,了解重建特定神经元亚群向其天然靶区的投射,为开发旨在恢复大型动物和人类神经功能的疗法带来了重大希望。不过,研究人员也承认,在非啮齿类动物中促进长距离再生非常复杂,需要采取具有复杂空间和时间特征的策略。尽管如此,他们得出结论认为,应用他们工作中提出的原则,"将打开实现有意义的损伤脊髓修复的框架,并可能加快其他形式的中枢神经系统损伤和疾病后的修复"。...PC版:https://www.cnbeta.com.tw/articles/soft/1387411.htm手机版:https://m.cnbeta.com.tw/view/1387411.htm

相关推荐

封面图片

战胜 "不可能" - 科学家通过脊髓再生逆转瘫痪

战胜"不可能"-科学家通过脊髓再生逆转瘫痪下胸椎脊髓再生突起投射到行走执行中心的全脊髓可视化。图片来源:EPFL/.Neurorestore当小鼠和人类的脊髓部分受损时,最初的瘫痪会随之出现广泛的、自发的运动功能恢复。然而,脊髓完全损伤后,脊髓的这种自然修复就不会发生,也就无法恢复。严重损伤后的有效恢复需要促进神经纤维再生的策略,但这些策略成功恢复运动功能的必要条件仍然难以捉摸。这项研究的资深作者马克-安德森(MarkAnderson)说:"五年前,我们证明了神经纤维可以在解剖学上完整的脊髓损伤中再生。但我们也意识到,这还不足以恢复运动功能,因为新纤维未能连接到病变另一侧的正确位置。"安德森是.NeuroRestore公司中枢神经系统再生部主任,也是Wyss生物和神经工程中心的科学家。下胸椎脊髓再生投射到行走执行中心的全脊髓可视化。图片来源:EPFL/.Neurorestore科学家们与加州大学洛杉矶分校(UCLA)和哈佛大学医学院的同行合作,利用日内瓦EPFL校园生物技术设施的先进设备进行了深入分析,并确定了哪种类型的神经元参与了部分脊髓损伤后的脊髓自然修复。该研究的第一作者乔丹-斯奎尔(JordanSquair)说:"我们利用单细胞核RNA测序法进行的观察不仅揭示了必须再生的特定轴突,而且还揭示了这些轴突必须与它们的天然目标重新连接才能恢复运动功能。"研究小组的研究成果发表在2023年9月22日出版的《科学》(Science)杂志上。他们的发现为设计多管齐下的基因疗法提供了依据。科学家们激活了小鼠体内已确定神经元的生长程序,使其神经纤维再生;上调特定蛋白质,支持神经元穿过病变核心生长;并施用引导分子,将再生神经纤维吸引到损伤下方的天然靶点。"Squair说:"当我们设计一种治疗策略,复制部分损伤后自发发生的脊髓修复机制时,我们受到了大自然的启发。下胸椎脊髓再生突起投射到行走执行中心的全脊髓可视化。图片来源:EPFL/.Neurorestore解剖学上脊髓完全损伤的小鼠恢复了行走能力,表现出的步态与部分损伤后恢复自然行走的小鼠的步态相似。这一观察结果揭示了再生疗法成功恢复神经创伤后运动功能的一个未知条件。这项研究的资深作者、.NeuroRestore公司的负责人GrégoireCourtine和JocelyneBloch说:"我们希望我们的基因疗法能与我们其他涉及脊髓电刺激的程序协同发挥作用。我们认为,治疗脊髓损伤的完整解决方案需要两种方法--基因疗法和脊髓刺激,前者用于重新生长相关神经纤维,后者用于最大限度地提高这些纤维和损伤部位脊髓产生运动的能力。"虽然在这种基因疗法应用于人体之前还必须克服许多障碍,但科学家们已经迈出了第一步,正在开发必要的技术,以便在未来几年实现这一创举。...PC版:https://www.cnbeta.com.tw/articles/soft/1386299.htm手机版:https://m.cnbeta.com.tw/view/1386299.htm

封面图片

创新纳米凝胶被证明可有效治疗脊髓损伤

创新纳米凝胶被证明可有效治疗脊髓损伤当前治疗方法面临的挑战目前可用于调节急性脊髓损伤后由控制大脑内部环境的成分介导的炎症反应的治疗方法疗效有限。这也是因为缺乏一种能选择性地作用于小胶质细胞和星形胶质细胞的治疗方法。纳米凝胶--中枢神经系统选择性药物治疗方案。资料来源:米兰理工大学马里奥-内格里研究所纳米凝胶的开发与功效米兰理工大学开发的纳米载体被称为纳米凝胶,由能与特定目标分子结合的聚合物组成。在这种情况下,纳米凝胶被设计成与神经胶质细胞结合,而神经胶质细胞在急性脊髓损伤后的炎症反应中至关重要。马里奥-内格里医学研究所(IstitutodiRicercheFarmacologicheMarioNegriIRCCS)和米兰理工大学(PolitecnicodiMilano)的合作表明,纳米凝胶含有一种具有抗炎作用的药物(罗利普兰),能够将神经胶质细胞从损伤状态转变为保护状态,积极促进受伤组织的恢复。研究表明,纳米凝胶对神经胶质细胞具有选择性作用,能有针对性地释放药物,最大限度地发挥药效,并减少可能出现的副作用。见解和未来方向米兰理工大学化学、材料与化学工程系'GiulioNatta'教授菲利波-罗西(FilippoRossi)解释说:"这项研究的关键在于了解能够在特定细胞群中选择性靶向纳米凝胶的功能基团。这使得通过减少不必要的影响来优化药物治疗成为可能。"马里奥-内格里研究所神经科学系急性脊髓创伤和再生组组长皮埃特罗-维利亚内塞继续说:"研究结果表明,纳米凝胶减少了炎症,提高了脊髓损伤动物模型的恢复能力,部分恢复了运动功能。这些结果为骨髓溶解症患者开辟了新的治疗途径。此外,这种方法还可能有益于治疗阿尔茨海默氏症等神经退行性疾病,因为炎症和神经胶质细胞在这些疾病中发挥着重要作用。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1420203.htm手机版:https://m.cnbeta.com.tw/view/1420203.htm

封面图片

科学家在小鼠体内发现关键蛋白质 有望彻底改变神经修复过程

科学家在小鼠体内发现关键蛋白质有望彻底改变神经修复过程索尔克研究所的研究人员发现,蛋白质Mitf是小鼠周围神经系统修复过程中的关键介质,这表明这是一个很有希望的新治疗靶点。在美国,每年有300多万人受到周围神经病变的影响,由于大脑和脊髓以外的神经受损,他们会感到疼痛和失去知觉。导致这种病症的原因有很多,包括糖尿病、外伤、遗传疾病和感染。索尔克研究所的科学家在小鼠身上发现了一项关于修复周围神经病变中受损神经的重大发现。他们发现,蛋白质Mitf能激活神经系统中特化的许旺细胞的修复功能。这一发现最近发表在《细胞报告》(CellReports)杂志上,它可能为旨在加强修复过程和有效治疗周围神经病变的创新疗法铺平道路。资深作者塞缪尔-普法夫(SamuelPfaff)教授说:"我们想知道,在急性创伤、遗传性疾病或退行性疾病等不同情况下,是什么机制控制着周围神经的损伤反应。我们发现,许旺细胞是神经中保护和支持神经元轴突的特殊细胞,它们进入修复状态的途径是由蛋白质Mitf介导的。"左起SamuelPfaff和LydiaDaboussi。资料来源:索尔克研究所外周神经系统由所有神经组成,这些神经从大脑和脊髓分支出来,为我们提供全身的感觉。外周神经中有许多细胞类型,但普法夫和他的团队重点研究的是神经元和许旺细胞(Schwanncell),前者在整个神经系统中传递信息,后者则保护健康的神经元并修复受损的神经元。考虑到由大脑和脊髓组成的中枢神经系统无法修复损伤,外周神经系统修复损伤的能力就显得尤为重要。然而,人们对这一壮举的机制仍然知之甚少。小鼠坐骨神经横截面。资料来源:索尔克研究所为了揭示许旺细胞是如何分化并开始修复周围神经损伤的,研究人员研究了夏科玛利牙病(CMT)小鼠模型,这是一种遗传性神经病。第一作者莉迪亚-达布西(LydiaDaboussi)曾是普法夫实验室的博士后研究员,现任加州大学洛杉矶分校助理教授。她表示:"我们的研究结果表明,Mitf开启的基因程序可以修复这些慢性疾病情况下造成的一些损伤,而当关闭这些程序时,疾病症状会变得更糟。"在患有CMT的小鼠身上,研究人员注意到,完成修复的许旺细胞核中含有高水平的Mitf--那里储存着如何成为许旺细胞以及如何进行修复的遗传指令。在研究Mitf和许旺细胞之间的这种关系时,他们发现Mitf在感知到神经元损伤之前一直在许旺细胞的细胞质中。然后,损伤促使Mitf从细胞的细胞质转移到细胞核,并在那里指导许旺细胞进行修复。为了验证Mitf在创建修复许旺细胞中的重要性,研究人员将Mitf完全移除。在创伤和CMT病例中,神经修复在缺少Mitf的情况下都会停止--这证明Mitf是外周神经修复和再生所必需的。达布西认为,Mitf就像一个灭火器。它一直存在于许旺细胞中,直到损伤发生时才被发现。而当损伤发生时,Mitf就会准备就绪,立即开启细胞的修复功能。最令人惊讶的是,Mitf竟然能在像CMT这样的慢性疾病中协调这些修复功能。索尔克大学本杰明-H-刘易斯讲座教授普法夫说:"利用许旺细胞修复程序在治疗慢性疾病方面具有巨大潜力。通过靶向治疗,我们有可能促使更多的许旺细胞修复周围神经损伤,并推动慢性病患者完成这些修复。此外,既然我们已经更好地掌握了修复机制,我们就可以看看是否也有可能启动脑干和脊髓的修复"。未来,研究人员希望更具体地研究糖尿病神经病变--最常见的周围神经病变。他们还希望探索加强这种修复途径的治疗方法,以创造更多的许旺细胞来修复损伤,无论损伤的来源是创伤、遗传还是长期发展。...PC版:https://www.cnbeta.com.tw/articles/soft/1401437.htm手机版:https://m.cnbeta.com.tw/view/1401437.htm

封面图片

传统草药圣蓟被发现具有明显的神经再生特性

传统草药圣蓟被发现具有明显的神经再生特性受伤轴突的再生能力有限,阻碍了神经损伤后的功能恢复。虽然目前临床上还没有加速轴突再生的药物,但最近的研究表明,由短舌匹菊中产生的部分小白菊内酯(parthenolide)抑制血管抑制素有可能加速轴突再生。然而,由于其口服生物利用度较低,小白菊内酯仅限于肠外给药。本研究调查了圣蓟中产生的另一种倍半萜内酯--cnicin,以促进轴突再生。科隆大学的研究人员发现,从药用植物圣蓟中提取的Cnicin能显著加速神经再生,为口服治疗神经损伤提供了一种潜在的新疗法。图片来源:迪特马尔-费舍尔动物模型和人体细胞都表明,Cnicin能明显加快轴突(神经纤维)的生长。该研究发表在《植物药》杂志上。具有长轴突的人类和动物受伤神经的再生路径也相应较长。由于轴突无法及时到达目的地,这往往会使愈合过程变得漫长,甚至经常是不可逆的。因此,加快再生生长速度可以在这方面发挥重要作用,确保纤维在出现无法弥补的功能障碍之前及时到达原定目的地。研究人员在动物模型和从患者捐赠的视网膜中提取的人体细胞中证实了轴突再生。每天给小鼠或大鼠注射一定剂量的Cnicin有助于更快地改善瘫痪和神经病变。与其他化合物相比,Cnicin有一个至关重要的优势:它可以口服(通过口腔)进入血液。它不必通过注射给药。值得注意的是,在不同物种的严重神经损伤后,静脉注射Cnicin能明显加快功能恢复,包括吻合断裂的神经。药代动力学分析表明,Cnicin在大鼠体内的血液半衰期为12.7分钟,口服生物利用度为84.7%。口服药物可促进小鼠神经损伤后的轴突再生和恢复。正确的剂量非常重要,因为Cnicin只能在特定的治疗窗口内发挥作用。剂量过低或过高都没有效果。这就是为什么进一步的人体临床研究至关重要。科隆大学的研究人员目前正在规划相关研究。药理学中心正在研究和开发修复受损神经系统的药物。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1428699.htm手机版:https://m.cnbeta.com.tw/view/1428699.htm

封面图片

靶向基因疗法帮助完全瘫痪的小鼠重新行走

靶向基因疗法帮助完全瘫痪的小鼠重新行走用一个过时的科技术语来说,脊髓是人体的信息高速公路。大脑和身体其他各部分之间的信息以难以置信的速度沿着粗大的神经束向上传递。因此,对这一通道造成的损害可能会使人衰弱,使患者受影响的部位失去知觉或活动能力。毫不奇怪,寻找修复这些损伤的新方法是一个关键的研究领域,最近的研究发现,使用绕过损伤区域的植入物、神经细胞移植以及有助于刺激神经再生的蛋白质、分子或化合物取得了一些成功。EPFL团队此前曾设法利用基因疗法再生神经纤维,但成效有限。该研究的资深作者马克-安德森(MarkAnderson)说:"五年前,我们证明了神经纤维可以在解剖学上完整的脊髓损伤中再生。但我们也意识到,这还不足以恢复运动功能,因为新纤维无法连接到病变另一侧的正确位置。"为了解决这个问题,研究人员研究了脊髓部分损伤后的自然修复过程。利用一种名为单细胞核RNA测序的技术,研究小组确定了恢复运动功能需要修复的特定轴突,以及它们如何在损伤的另一侧找到正确的目标。通过分析,研究人员开发出一种新的基因疗法,它能同时通过几种方式促进神经的重新连接。这种疗法能激活某些神经元的生长程序,使关键神经纤维再生;上调某些蛋白质,帮助神经元在受损组织中生长;并添加一些分子,引导这些再生神经到达另一侧的目标。基因疗法后,受伤小鼠能够恢复行走能力EPFL在对脊髓完全损伤的小鼠进行的测试中,研究小组发现,接受治疗的动物在几个月内就恢复了行走能力,其步态与部分损伤后恢复的小鼠相似。虽然在将这种疗法应用于人类之前还有很多工作要做,但研究小组表示,这标志着向最终目标迈出了关键的一步。该研究的资深作者GrégoireCourtine说:"我们预计,我们的基因疗法将与涉及脊髓电刺激的其他程序协同发挥作用。我们相信,治疗脊髓损伤的完整解决方案将需要两种方法--基因疗法来重新生长相关的神经纤维,脊髓刺激来最大限度地提高这些神经纤维和损伤下方脊髓产生运动的能力。"这项研究发表在《科学》杂志上。研究小组在下面的视频中介绍了这项工作。...PC版:https://www.cnbeta.com.tw/articles/soft/1386183.htm手机版:https://m.cnbeta.com.tw/view/1386183.htm

封面图片

哥伦比亚科学家发现脑损伤可能是隐藏意识的根源

哥伦比亚科学家发现脑损伤可能是隐藏意识的根源核磁共振成像扫描揭示了隐藏意识背后的脑损伤。资料来源:哥伦比亚大学欧文医学中心克拉森实验室研究负责人、哥伦比亚大学瓦格洛斯内外科医学院神经病学副教授、纽约长老会/哥伦比亚大学欧文医疗中心重症监护和住院神经病学主任、医学博士JanClaassen说:"我们的研究表明,隐性意识患者可以听到并理解口头命令,但他们无法执行这些命令,这是因为从大脑向肌肉传达指令的大脑回路受到了损伤。"这些发现可以帮助医生更快地识别可能有隐性意识的脑损伤患者,并更好地预测哪些患者有可能通过康复治疗恢复。隐藏意识又称认知运动解离(CMD),约有15%到25%的头部外伤、脑出血或心脏骤停导致的脑损伤患者会出现这种情况。在之前的研究中,克拉森及其同事发现,通过脑电图检测到的微妙脑电波最能预测无反应脑损伤患者的隐性意识和最终恢复情况。但在这种情况下,大脑中发生紊乱的精确通路尚不清楚。在这项新研究中,研究人员使用脑电图对107名脑损伤患者进行了检查。该技术可以确定患者何时在尝试对"继续张开和合上你的右手"之类的命令做出反应,尽管无法做出反应。分析结果检测出其中21名患者患有CMD。研究人员随后分析了所有患者的核磁共振成像结构扫描结果。共同第一作者、克拉森实验室副研究员、信号处理、机器学习和生物统计学专家沈琦(音译)博士说:"利用我们开发的一种名为双聚类分析的技术,我们能够找出CMD患者共有的脑损伤模式,并与没有CMD的患者形成对比。"研究人员发现,所有CMD患者都有与唤醒和指令理解相关的完整大脑结构,这支持了这样一种观点,即这些患者听到并理解了指令,但却无法执行。克拉森说:"我们发现,所有CMD患者负责将理解的运动指令与运动输出相结合的大脑区域都存在缺陷,这使得CMD患者无法根据口头指令采取行动。"这些发现可能会让研究人员更好地了解哪些脑损伤患者患有CMD,这将有助于支持意识恢复的临床试验。在将这些方法应用于临床实践之前,还需要进行更多的研究。"不过,我们的研究表明,利用广泛可用的脑结构成像技术筛查隐性意识是有可能的,这使CMD的检测离临床普遍应用更近了一步,"克拉森说。并非每个重症监护病房都有资源和人员接受过使用脑电图检测隐性意识的培训,因此核磁共振成像可能提供一种简单的方法来识别需要进一步筛查和诊断的患者。...PC版:https://www.cnbeta.com.tw/articles/soft/1377749.htm手机版:https://m.cnbeta.com.tw/view/1377749.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人