LIGO挤压光源 超越量子极限以测量时空涟漪

LIGO挤压光源超越量子极限以测量时空涟漪当像黑洞这样的超大质量天体发生碰撞时,释放出的能量足以在现实中激起涟漪。一个多世纪前,爱因斯坦首次预言了这些引力波,但直到2015年,科学家们才终于首次直接探测到它们。负责这次重大探测的设施是激光干涉仪引力波天文台(LIGO),其工作原理是将激光射入两条长隧道,在镜子上反弹,然后测量光线如何返回。通过控制其他影响并仔细观察,探测器可以感知激光束发生的微小扭曲--小于一个质子的宽度时表明引力波已经经过。此后的几年里,LIGO和其他探测器已经捕捉到了数十个引力波信号。但这些设施的灵敏度是有极限的,这是由量子物理定律本身决定的。虽然真空(包括LIGO激光管中的真空)通常被认为是完全空的空间,但这是不可能实现的。量子波动意味着粒子会不断出现,存活几分之一秒,然后又消失。这种微弱的量子噪声干扰了LIGO的观测,给观测带来了硬限制。在LIGO上提供挤压光源的仪器,在进行维护时被暴露出来。现在,LIGO的科学家们已经找到并展示了一种方法,利用一种叫做量子挤压的技术来实现突破。这种方法利用了不确定性原理,即你对物体的某个特征了解得越精确,对其他特征的了解就越不精确。最常见的例子是一个粒子在盒子里弹来弹去--如果你能准确测量出它在某一特定时间的位置,那么你对它的动量的了解就会减少,反之亦然。在这种情况下,科学家们操纵了不确定性原理,通过调整光的两个特性--相位和振幅,从LIGO的激光器中获得了更多信息。在2019年升级过程中添加到管道中的特殊晶体"挤压"了光的相位,从而使光子以更可预测的时间到达传感器。当然,这也会降低振幅的确定性,这意味着激光会导致反射镜振动,掩盖它可能探测到的任何低频引力波。为了解决这个问题,LIGO上安装了一个新仪器,叫做频率相关挤压腔。顾名思义,它的工作原理是对不同频率的光进行不同性质的挤压,以达到两全其美的效果。为了进行最精确的引力波探测,科学家们需要对低频的振幅和高频的相位有更多的确定性,而该系统现在可以做到这一点。这项研究的作者拉纳-阿迪卡里(RanaAdhikari)说:"以前,我们必须选择我们希望LIGO在哪些方面更加精确。现在,我们可以切蛋糕庆祝了。我们早就知道如何写下方程式来实现这一目标,但直到现在我们才清楚我们是否能真正实现这一目标。这就像科幻小说一样。"研究小组表示,通过突破这一量子极限,精度的提高将使LIGO能够探测到比以前多60%的引力波事件。LIGO的伙伴天文台Virgo位于意大利,预计也将在明年年底前开始使用频率依赖性挤压技术。研究小组在下面的视频中介绍了这项工作。挤压光如何减少LIGO测量的不确定性...PC版:https://www.cnbeta.com.tw/articles/soft/1391947.htm手机版:https://m.cnbeta.com.tw/view/1391947.htm

相关推荐

封面图片

时空弯曲的涟漪,让人们离宇宙真理更近?1916年

时空弯曲的涟漪,让人们离宇宙真理更近?1916年,爱因斯坦发表论文,预测了引力波的存在;一个世纪后,2015年9月14日,位于美国华盛顿州和路易斯安那州的“先进LIGO”激光干涉仪首次探测到了黑洞合并事件,人类终于成功探测到的引力波信号GW150914。两年后,2017年10月3日,由于在引力波领域的突出贡献,美国麻省理工学院雷纳·韦斯(RainerWeiss)、加州理工学院基普·索恩(KipThorne)和巴里·巴里什(BarryBarish)被授予2017年诺贝尔物理学奖。刘慈欣的小说《朝闻道》中,掌握宇宙终极理论的外星文明“排险者”造访了地球,至于排险者如何得到这本终极真理,答案就是引力波。可以说,引力波的证实开启了一个全新的时代,如今,随着对于引力波研究的日渐深入,以光速传播扰动时空也让人们离宇宙真理更近...来自:雷锋频道:@kejiqu群组:@kejiquchat投稿:@kejiqubot

封面图片

时空涟漪 - 科学家揭开引力波之间相互作用的秘密

时空涟漪-科学家揭开引力波之间相互作用的秘密当两个黑洞相撞时,其冲击力是如此之大,以至于我们在地球上都能探测到。这些天体是如此巨大,以至于它们的碰撞会在时空本身产生涟漪。科学家称这些涟漪为引力波。虽然爱因斯坦早在1916年就预言了引力波的概念,但物理学家直到2015年才在LIGO(激光干涉引力波天文台)上直接探测到引力波。现在,在能源部科学办公室和其他几个联邦机构的支持下,科学家们正在努力更好地理解这些引力波,以及它们能告诉我们有关黑洞的信息。除了威力巨大之外,这些碰撞还具有令人难以置信的复杂物理特性。为了准确,对它们的计算机模拟也必须非常复杂。模拟需要包括碰撞过程中的每一个步骤:黑洞相互螺旋上升、合并、变成一个扭曲的黑洞,然后沉降为一个单一的黑洞。这个过程非常复杂,科学家需要超级计算机来运行模拟。这张照片来自"模拟极端时空"(SimulatingeXtremeSpacetimes,简称SXS)合作项目利用超级计算机进行的模拟,照片中两个黑洞即将合并。当黑洞旋转在一起时,它们会在空间和时间上产生被称为引力波的涟漪。图片来源:SXSLensing/SimulatingeXtremeSpacetimesCollaboration然后,物理学家将这些模拟的数值数据与这一过程的模型进行比较。旧版本的模型显示引力波不会相互影响或相互作用。然而,科学家们怀疑这并不准确。试想一下,两个人相邻站在一个水池里制造引力波。如果每个人发出的波都非常小,那么这些波就有可能互不干扰。它们在相互影响之前就会消失。但是,如果两个人都在制造大波浪,波浪就会相互碰撞,产生新的波浪。科学家们知道碰撞会产生强烈的引力波,因此认为它们会相互影响--只是没有显示出来而已。来自加州理工学院(Caltech)、哥伦比亚大学、密西西比大学、康奈尔大学和马克斯-普朗克引力物理研究所的一个研究小组对这些数值输出进行了新的、更详细的分析。分析结果表明,引力波之间存在相互作用。每个波都会导致其他波发生轻微变化。相互作用产生了具有各自独立频率的新型波。这些新的波比原来的波更小、更混乱、更不可预测。通过在模型中加入这一特征,科学家们可以更准确地描述数值输出告诉他们的信息。LIGO利文斯顿实验室。资料来源:LIGO实验室在黑洞碰撞模型中加入这些相互作用将使模型更加精确。反过来,这些模型将帮助我们更好地解释真实世界的观测结果。模型越精确,对解读来自LIGO的数据就越有用。此外,更好的模型还能帮助科学家弄清广义相对论是否是解释黑洞实际情况的正确理论。虽然广义相对论--爱因斯坦提出的著名理论广泛地解释了引力如何影响时空,但这一理论在多大程度上适用于黑洞的奇特性质仍有待确定。黑洞碰撞距离地球和我们的日常生活遥远得难以想象。虽然我们无法亲身感受到引力波,但科学家们获得的数据和建立的模型每天都在扩展我们对这些不可思议现象的认识。...PC版:https://www.cnbeta.com.tw/articles/soft/1389973.htm手机版:https://m.cnbeta.com.tw/view/1389973.htm

封面图片

印度政府批准在其境内建造LIGO引力波探测器

印度政府批准在其境内建造LIGO引力波探测器印度政府将花费约3.2亿美元建造LIGO-India,预计将在本世纪末进行首次观测。加州理工学院LIGO实验室的执行主任DavidReitze说:"在过去的几年里,我们非常努力地将LIGO探测器带到印度。从印度政府那里获得绿灯是一个非常受欢迎的发展,它不仅会使印度受益,而且会使整个国际引力波界受益。"加州理工学院物理学教授RanaAdhikari说:"作为最新的引力波探测器,LIGO-India将从一开始就拥有我们所有的最新和最好的技术,"他与Reitze和LIGO团队的其他人一起帮助领导LIGO-India的开发,并与印度科学家合作。LIGO-India是LIGO实验室(由加州理工学院和麻省理工学院运营,由美国国家科学基金会(NSF)资助)与印度的拉贾-拉曼纳先进技术中心(RRCAT)、等离子体研究所(IPR)、大学间天文学和天体物理学中心(IUCAA)以及原子能部建筑服务和房地产管理司(DCSEM)之间的合作。计划中的设施与华盛顿州汉福德和路易斯安那州利文斯顿的LIGO观测站一样,将包括一个具有4公里长臂的L形干涉仪--将建在印度马哈拉施特拉邦的昂达市附近。当LIGO-India完成后,它将加入一个全球引力波观测站网络,其中包括意大利的Virgo和日本的KAGRA。凭借其先进的引力波感应技术,LIGO-India将极大地提高科学家确定引力波源天空位置的能力。由于它在地球上相对于LIGO、Virgo和KAGRA的位置,它还将填补当前引力波网络的盲点。Adhikari说:"LIGO-India将把我们对引力波事件的定位精度提高一个数量级。这将大大增强我们回答关于宇宙的基本问题的能力,包括黑洞如何形成和我们宇宙的膨胀率,以及更严格地测试爱因斯坦的广义相对论。""我非常高兴得知印度内阁批准为那里的引力波观测站提供建设资金,"NSF主任SethuramanPanchanathan说。"与像印度这样志同道合的国家合作,分享我们的价值观和愿望,不仅可以实现奇妙的发现,更重要的是可以激发人才的活力,释放各地的创新。利用美国国家科学基金会资助的LIGO合作项目开发的高科技干涉仪组件,LIGO-India将增强现有的引力波探测器网络--美国的两个LIGO探测器、意大利的Virgo和日本的KAGRA--以便更精确地确定引力波源的位置并更有力地监测其信号。这将大大促进世界各地的研究人员,他们将把光学和射电望远镜的观测结果与引力波网络的信息结合起来,对宇宙进行新的发现。"到目前为止,LIGO和Virgo已经探测到了数十次黑洞之间碰撞的巨大声响。2017年,这两个天文台还探测到中子星之间的碰撞,不仅发出了引力波,还发出了跨越电磁波谱的强大光波。由于所有三个引力波探测器(LIGO的双胞胎设施和Virgo)在2017年的事件中都在观察天空,科学家们能够缩小事件发生的天空区域。这被证明是指导光基望远镜确定壮观爆炸的精确位置的一个关键因素。基于光线的观察导致发现重元素,如黄金,是在宇宙爆炸中形成的。自那次事件后,LIGO-Virgo网络又自信地探测到了一次涉及中子星的碰撞,尽管它没有被光基望远镜看到。有了LIGO-India在天空中的眼睛,发现这些所谓的多信使事件(光和引力波是信使)会成为一项更容易的任务。LIGO-India的一些前期建设活动已经进行,如LIGO-India建筑物的设计、通往该地的道路建设以及真空室的制造和测试。该设施将由印度研究人员与LIGO团队的成员共同建造。这种国际合作已经带来了两国之间的思想交流和新关系。例如,作为加州理工学院夏季本科生研究奖学金(SURF)计划的一部分,数十名印度学生被选中与LIGO团队一起工作。此外,加州理工学院计划邀请几位来自印度的访问科学家在加州理工学院进行LIGO工作。"在国际网络中拥有遥远的第三个LIGO观测站,这得益于共同的仪器设计、调试知识、技术协调和灵敏度,将实现LIGO的一个长期目标,"LIGO汉福德观测站运营的前副主任弗雷德-拉布说,他已经为LIGO-印度项目工作了近十年。"这将改变科学的游戏规则"。...PC版:https://www.cnbeta.com.tw/articles/soft/1356381.htm手机版:https://m.cnbeta.com.tw/view/1356381.htm

封面图片

量子挤压:麻省理工学院开启精密时钟的新纪元

量子挤压:麻省理工学院开启精密时钟的新纪元根据麻省理工学院的一项新研究,时钟、激光器和其他振荡器可以调整到超量子精度,从而使研究人员能够追踪时间上无限微小的差异。图片来源:麻省理工学院新闻时钟的稳定性取决于其所处环境的噪音。一阵微风就会使钟摆的摆动失去同步。热量也会扰乱原子钟中原子的振荡。消除这些环境影响可以提高时钟的精度。但也仅此而已。麻省理工学院的一项新研究发现,即使消除了来自外界的所有噪声,时钟、激光束和其他振荡器的稳定性仍然容易受到量子力学效应的影响。振荡器的精度最终将受到量子噪声的限制。但理论上,有一种方法可以突破这一量子限制。在他们的研究中,研究人员还表明,通过操纵或"挤压"造成量子噪声的状态,振荡器的稳定性可以得到改善,甚至突破其量子极限。麻省理工学院机械工程系助理教授维维谢克-苏迪尔(VivishekSudhir)说:"我们所展示的是,激光和时钟等振荡器的稳定性实际上是有极限的,这个极限不仅是由它们所处的环境设定的,也是量子力学迫使它们左右晃动的事实设定的。然后,我们已经证明,你甚至有办法绕过量子力学的晃动。但你必须更聪明,而不仅仅是把它与环境隔离开来,必须玩弄量子态本身。"研究小组正在对他们的理论进行实验测试。如果他们能证明可以操纵振荡系统中的量子态,研究人员设想可以将时钟、激光和其他振荡器调整到超量子精度。然后,这些系统就可以用来追踪时间上无限微小的差异,比如量子计算机中单个量子比特的波动,或者在探测器之间闪烁的暗物质粒子的存在。麻省理工学院物理系研究生哈德森-拉夫林(HudsonLoughlin)说:"我们计划在未来几年内展示几种具有量子增强计时能力的激光器。我们希望,我们最近的理论发展和即将进行的实验将推进我们精确计时的基本能力,并实现新的革命性技术。"Loughlin和Sudhir在《自然-通讯》(NatureCommunications)杂志上发表的一篇开放存取论文中详细介绍了他们的工作。激光精度在研究振荡器的稳定性时,研究人员首先研究了激光--一种能产生高度同步光子的波状光束的光学振荡器。激光的发明主要归功于物理学家阿瑟-肖洛(ArthurSchawlow)和查尔斯-汤斯(CharlesTownes)。激光器的设计以"发光介质"为中心,"发光介质"是原子的集合,通常镶嵌在玻璃或晶体中。在最早的激光器中,围绕着发光介质的闪光灯管会刺激原子中的电子跃升能量。当电子放松回到较低能量时,就会以光子的形式发出一些辐射。照明介质两端的两面镜子会将发出的光子反射回原子中,从而激发更多的电子,产生更多的光子。其中一面镜子与激光介质一起充当"放大器",促进光子的产生,而第二面镜子部分透射,充当"耦合器",将一些光子提取出来,形成一束集中的激光。自激光器发明以来,Schawlow和Townes提出了一个假设,即激光器的稳定性应受到量子噪声的限制。此后,其他人通过模拟激光的微观特征来验证他们的假设。通过非常具体的计算,他们表明,激光光子和原子之间难以察觉的量子相互作用确实会限制其振荡的稳定性。Sudhir指出:"但这项工作必须进行极其细致、微妙的计算,这样才能理解这种限制,但仅限于特定种类的激光。我们希望极大地简化这一过程,以了解激光器和各种振荡器。"“施加压力”研究小组并没有把重点放在激光错综复杂的物理特性上,而是致力于简化问题。"Sudhir解释说:"当电气工程师考虑制造振荡器时,他们会使用一个放大器,然后将放大器的输出馈入自己的输入端。这就像蛇吃自己的尾巴。这是一种极为自由的思维方式。你不需要了解激光的细枝末节。取而代之的是一幅抽象的图景,不仅是激光器的图景,也是所有振荡器的图景。"在他们的研究中,研究小组绘制了一幅类似激光振荡器的简化图。他们的模型由一个放大器(如激光的原子)、一条延迟线(例如,光在激光反射镜之间传播所需的时间)和一个耦合器(如部分反射镜)组成。研究小组随后写下了描述系统行为的物理方程,并进行了计算,以了解量子噪声会在系统的哪个位置出现。"通过将这一问题抽象为一个简单的振荡器,我们可以精确定位量子波动进入系统的位置,它们来自两个地方:放大器和使我们能够从振荡器中获得信号的耦合器,"Loughlin说。"如果我们知道了这两点,我们就知道了该振荡器稳定性的量子极限是多少"。科学家们可以利用他们在研究中列出的方程来计算自己振荡器的量子极限。更重要的是,研究小组证明,如果可以"挤压"两个信号源之一的量子噪声,就有可能克服这一量子极限。量子挤压是指以成比例地增加系统某一方面的量子波动为代价,使其最小化。这种效果类似于将气球中的空气从一部分挤入另一部分。在激光器中,研究小组发现,如果耦合器中的量子波动被挤压,就能提高输出激光束的精度或振荡时间,即使激光功率中的噪声会因此增加。"当你发现某种量子力学极限时,总会有这样一个问题:这种极限的可塑性有多大?"Sudhir说。"它真的是一个硬性的限制吗,或者说,通过操纵量子力学,你是否还能提取出一些果汁?在这种情况下,我们发现是有的,这是一个适用于一大类振荡器的结果。"...PC版:https://www.cnbeta.com.tw/articles/soft/1400943.htm手机版:https://m.cnbeta.com.tw/view/1400943.htm

封面图片

LIGO回归:大名鼎鼎的引力波探测器重新启动并恢复运行

LIGO回归:大名鼎鼎的引力波探测器重新启动并恢复运行LIGO由两个巨大的探测器组成,这两个探测器现在都在运行并搜索宇宙。第一个LIGO探测器可以在华盛顿的汉福德找到,而第二个则位于路易斯安那州的利文斯顿。由于进行了一系列价值数百万美元的升级,这两个探测器现在都在重新开始对宇宙的观测,并提高了灵敏度。对该设施的改进应允许探测器每隔两到三天就能接收到黑洞碰撞的信号。此前,它只能每星期左右探测一次碰撞。位于路易斯安那州利文斯顿的先进LIGO引力探测器的航拍照片。图片来源:Picturellarious美国各州的LIGO探测器本应由第三个探测器加入,即位于意大利比萨附近的Virgo探测器。然而,该探测器还没有准备好投入使用,尽管他们希望在秋天之前将其启动并运行。所有这些引力波探测器的目标是探测和发现我们宇宙中的黑洞合并。科学家们希望更多地了解这些宇宙碰撞,因为它们有可能改变它们所包含的星系的一切。不仅如此,一些科学家认为,一些黑洞是时空结构本身的结点,而对这些结点的更多了解,只会有利于我们对宇宙基础的理解。由于LIGO和其他探测器得到了升级,它们能够提取关于我们宇宙中产生引力波的螺旋形物体的更重要和详细的信息。这包括像每个人如何旋转,以及它们如何具体地围绕对方旋转的信息。也许这些探测器甚至会帮助我们在某一天看到黑洞。...PC版:https://www.cnbeta.com.tw/articles/soft/1362423.htm手机版:https://m.cnbeta.com.tw/view/1362423.htm

封面图片

相互毁灭:邻近星系中的双子星、黑洞和未来时空的涟漪

相互毁灭:邻近星系中的双子星、黑洞和未来时空的涟漪这些恒星围绕着一个共同的重力中心运行,一起被称为双星,位于小麦哲伦星系,距离我们的银河系仅有21万光年。这些恒星每隔三天就会互相绕行一次,是迄今为止观察到的最大的接触性恒星(接触性双星)。但是,正是它们之间相互破坏的关系引起了研究人员的兴趣。利用美国宇航局的哈勃望远镜和欧洲南方天文台(ESO)位于智利的甚大望远镜上的多单元光谱探测器(MUSE)以及其他望远镜收集的长期数据,研究人员测量了来自双星的不同光带(光谱分析)。他们发现,较小恒星的大部分外部包层已经被较大的恒星剥离。该研究的共同作者DanielPauli说:"这颗双星是迄今为止观察到的质量最大的接触双星。"较小的、较亮的、较热的恒星质量是太阳的32倍,目前正在向其较大的同伴失去质量,后者的质量是我们太阳的55倍。"研究人员说,在天文演化的计划中,用不了多久,这颗小恒星就会变成黑洞,而这颗恒星的角色将被颠覆。这项研究的主要作者马修-里卡德说:"较小的恒星将首先成为黑洞,在短短70万年内,要么通过一个被称为超新星的壮观爆炸,要么它可能大到坍缩成一个黑洞而不向外爆炸。在第一个黑洞开始从它的同伴那里增加质量,对它的同伴进行报复之前,它们将成为约300万年的躁动不安的邻居。"他们的发现通过比较来自处女座干涉仪和LIGO(激光干涉仪引力波观测站)的引力波观测结果与双星演化的理论模型得到了支持。"感谢引力波探测器Virgo和LIGO,在过去几年中已经探测到几十个黑洞合并,"Rickard说。"但是到目前为止,我们还没有观察到预测会塌陷成这种大小的黑洞并在时间尺度上短于或甚至与宇宙年龄大致相当的恒星。"引力波是宇宙中最剧烈和最有能量的过程所引起的时间和空间的无形"涟漪"。最强的引力波是由黑洞碰撞这样的灾难性事件产生的,这将破坏时空,从而发出宇宙涟漪,以光速向各个方向传播。这些涟漪携带着关于其起源的信息。Pauli说:"仅仅过了20万年,用天文术语来说就是一瞬间,伴星也将坍缩成一个黑洞。这两颗大质量的恒星将继续围绕对方运行,每隔几天绕一圈,持续数十亿年"。根据这项研究的结果,在黑洞相撞之前我们还有一些时间。但当它们发生时,将产生引力波,在地球上可能会被探测到。慢慢地,它们将通过发射引力波失去这种轨道能量,直到它们每隔几秒钟就互相绕行一次,最终在180亿年后合并在一起,通过引力波释放巨大的能量。有这样的恒星离我们自己的星系如此之近,使研究人员能够进一步了解宇宙的情况。Rickard补充说:"在离我们的银河系如此之近的地方发现这种演化途径的恒星,为我们提供了一个极好的机会,可以更多地了解这些黑洞双星是如何形成的。"这项研究已被接受在《天文学和天体物理学》杂志上发表。...PC版:https://www.cnbeta.com.tw/articles/soft/1357173.htm手机版:https://m.cnbeta.com.tw/view/1357173.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人