北京理工大学研究人员研发操纵装置 实现精确控制光子角动量

北京理工大学研究人员研发操纵装置实现精确控制光子角动量旋转物体携带角动量,这一特性也延伸到最微小的粒子,如光子。光子拥有两种不同形式的角动量:自旋角动量(SAM)和轨道角动量(OAM)。自旋角动量在两个特征值之间舞动,代表左右圆极化,而轨道角动量则有无限个特征值,对应于螺旋阶段。当SAM与OAM结合在一起时,我们就见证了"总角动量"(TAM)的出现,这是一个光子工具箱,应用领域广泛,涵盖激光雷达、激光处理、光通信、光计算、量子信息等。正如OAM为该领域带来的革命性变化一样,TAM模式的高效识别和实时控制也为TAM的突破性应用提供了关键。然而,现有的识别光子TAM状态的方法有其局限性,包括动态范围受限、识别精度低以及无法即时调整滤波。这些制约因素限制了TAM的开发和应用进展。从光子束中提取所需的TAM模式至今仍是一个未解之谜。总角动量操纵器的概念结构:携带多种角动量模式的光束通过操纵器进行过滤。资料来源:Li等人,doi10.1117/1.AP.5.5.056002。据《先进光子学》(AdvancedPhotonics)杂志报道,北京理工大学的研究人员开发出了一种光子TAM操纵器,它消除了障碍,实现了对SAM和OAM的按需操纵。他们的方法涉及两个类似单元的对称级联:TAM分离器和TAM反向器。这些单元由被称为解包器和校正器的专用光学元件组成。我们可以将光子TAM操纵器想象成一个指挥家,领导着一个由光线组成的交响乐团。TAM分离器将进入的光束转换成空间排列的条纹组合,每个条纹代表一种TAM模式。空间滤波器开始工作,决定哪些TAM模式需要保留,哪些需要屏蔽。最后,TAM反向器将分离的光束带回空间域,完成这首交响乐。这一转换过程将入射光束从空间域映射到"位置-TAM域",便于在转换到空间域之前进行过滤。当多TAM状态入射时,系统在直通和选择性阻断情况下的性能。(a)入射光束的实验结果;(b)上述两种情况下输出光束的TAM光谱。在直通情况下,输出模式与输入模式一致。对于选择性阻断情况,放置在分离平面上的空间滤波器为Sp2。阻挡后,这些光束的图案从花瓣形转变为甜甜圈形。资料来源:Li等人,doi10.1117/1.AP.5.5.056002。研究人员报告的实验演示支持识别多达42种单独的TAM模式。研究结果表明,TAM具有良好的状态选择性能,因此对高速大容量数据传输和高安全性光子加密系统特别有吸引力。它还为高保真光子计算和量子雷达信号处理提供了新的视角。...PC版:https://www.cnbeta.com.tw/articles/soft/1392269.htm手机版:https://m.cnbeta.com.tw/view/1392269.htm

相关推荐

封面图片

世界首台双光束线光电子动量显微镜在日本亮相

世界首台双光束线光电子动量显微镜在日本亮相访问:NordVPN立减75%+外加3个月时长另有NordPass密码管理器光束线BL6U、BL7U、新建的BL7U分支和电子存储环以虚线标出。左上(下)插图显示了利用BL6U(BL7U分支)测量的金(111)表面的光电子动量图案。资料来源:分子科学研究所FumihikoMatsui教授小组日本UVSOR设施推出的首台双光束线光电子动量显微镜可用于研究电子在材料中的行为,尤其是分析价轨道方面带来了突破性进展,推动了材料科学的发展。分子科学研究所/高等研究大学(SOKENDAI)的研究人员与大阪大学(OsakaUniversity)合作,对这一先进的分析仪和实验站进行了升级,将两条起伏光束线用作激发源。通过将现有的真空紫外线(VUV)光束线BL7U分支开来,现在除了来自光束线BL6U的软X射线光束外,光电子动量显微镜还可以同时使用VUV光。这台世界上第一台"双光束线光电子动量显微镜"可以:1)使用掠入射软X射线光进行元素选择性测量;2)使用正常入射紫外光进行高度对称测量。利用这些光源的灵活性,为电子行为的多模式分析开辟了一条新途径。要特别强调的是,在正常入射配置下进行光电子能谱分析,全世界只有UVSOR的这台仪器可以做到。这种正常入射的高对称配置尤其有利于通过光子偏振依赖的过渡矩阵元素分析对价电子轨道进行精确分析。在这项工作中将这种方法应用于金(111)表面的价电子。这种独特的双光束线光电子动量显微镜能让人更深入地了解材料中的电子行为,在凝聚态物理、分子科学和材料科学领域带来创新。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1431424.htm手机版:https://m.cnbeta.com.tw/view/1431424.htm

封面图片

量子突破:多功能金属膜如何改变光子学

量子突破:多功能金属膜如何改变光子学用于任意塑造二维六方氮化硼量子发射的多功能金属膜的艺术插图。资料来源:ChiLi、JaehyuckJang、TrevonBadloe、TieshanYang、JoohoonKim、JaekyungKim、MinhNguyen、StefanA.Maier、JunsukRho、HaoranRen、IgorAharonovich。量子发射是实现光子量子技术的关键。固态单光子发射器(SPE),如六方氮化硼(hBN)缺陷,可在室温下工作。它们因其坚固性和亮度而备受青睐。从SPE收集光子的传统方法依赖于高数值孔径(NA)物镜或微结构天线。虽然光子收集效率很高,但这些工具无法操控量子发射。要对发射的量子光源进行任何所需的结构化处理,都需要多个笨重的光学元件,如偏振器和相位板。在最近发表在《eLight》杂志上的一篇新论文中,莫纳什大学的ChiLi博士和HaoranRen博士领导的一个国际科学家团队开发出了一种新型多功能金属膜,用于构造SPE的量子发射。以不同空间形式任意变换光束的能力对于量子光源来说至关重要。元表面改变了光子设计的面貌。它带来了从光学成像和全息技术到激光雷达和分子传感的重大技术进步。最近,人们设计了将纳米级发射器直接集成到纳米结构谐振器和元表面的方法,以收集和演示对SPE发射的基本定制。这些最初的演示证明了平面光学在推动量子发射操纵方面的必要性。研究小组通过设计和制造一种多功能金属膜来解决这一问题。韩国物理学家JaehyuckJang博士、TrevonBadloe博士和浦项科技大学的JunsukRho教授制造出了这种新型金属膜。它可以同时调整方向性、极化和轨道角动量(OAM)自由度。他们利用金属离子演示了在室温下从氢化硼中的固相萃取物(SPEs)进行量子发射的多维结构化。研究小组展示了量子发射方向性的任意塑造。他们还表明,可以在金属感曲线上添加不同的螺旋波面,从而在SPE的正交极性中产生独特的OAM模式。这项突破性的实验工作由IgorAharonovich教授领导的悉尼科技大学和TMOS(澳大利亚研究理事会卓越中心)完成。所展示的多自由度量子发射任意波前整形技术可以充分释放固态SPE的潜力,将其用作先进量子光子应用的高维量子源。该团队的新技术提供了一个新平台,利用超薄元光学器件在室温下实现多自由度量子发射的任意波前整形。它可能为量子信息科学领域提供新的见解。研究小组认为,操纵光子的偏振可以改善滤波效果,从而对量子密码学和纠缠分发产生重大影响。偏振分离对于未来利用氢化硼SPE生成偏振纠缠光子对至关重要。金属膜的未来扩展可实现高维单光子混合量子态的产生。未来将结构化SPE源与可靠的传输环境(如光纤)进行整合,将有望实现信息容量更大、抗噪声能力更强、安全性更高的量子网络。...PC版:https://www.cnbeta.com.tw/articles/soft/1376677.htm手机版:https://m.cnbeta.com.tw/view/1376677.htm

封面图片

西安理工大学科研团队实现对斜程能见度精确测量

西安理工大学科研团队实现对斜程能见度精确测量记者近日从西安理工大学获悉,该校激光雷达科研团队在斜程能见度测量技术上取得突破。他们提出了一种激光雷达结合辐射传输模式的方法,突破了目前的斜程能见度测量技术瓶颈,实现了精确测量。相关成果刊发在《光学学报》杂志上。针对大气散射辐射亮度测量的技术难题,该团队借助拉曼—米散射激光雷达的气溶胶精细探测技术、辐射传输模式的大气散射辐射亮度解析方法和大气散射辐射亮度校正的斜程能见度测量技术,实现了对斜程能见度的精确测量。(科技日报)

封面图片

南京理工大学研发的聪明装置可有效地从海水中分离出氢气和锂

南京理工大学研发的聪明装置可有效地从海水中分离出氢气和锂目前人们可以淡化海水,然后将其分离,但这不是一个很好的解决方案;大部分输入能量在淡化过程中损失了,这使所制造的氢气的价格上升。也有很多直接的海水电解机,但大多数死得太快,在商业意义上是没有用的;复杂的海洋酿造物中的氯化物离子在阳极变成高腐蚀性的氯气,它侵蚀了电极并使催化剂退化,直到机器停止工作。中国南京理工大学的研究人员认为他们已经找到了解决这个问题的方法。在上个月发表在《自然》杂志上的一项研究中,团队展示了一台直接海水电解机,它运行了3200多个小时(133天)而没有发生故障。它是高效的,可扩展的,操作起来很像淡水分流器,"而操作成本没有明显的增加"。该团队的电解器使用廉价、防水、透气、防生物污染的聚四氟乙烯膜,使海水与浓缩的氢氧化钾电解液和电极完全分离。这些膜阻止液态水通过,但它们可以让水蒸气通过。海水侧和电解质侧之间的水蒸气压力差异"为海水侧的自发海水气化(蒸发)提供了驱动力"。当水从电解质中分裂成氢气和氧气时,它在电解质和海水之间产生了蒸汽压差,导致海水自发蒸发并通过防水膜因此,得到的是纯水从海水中迅速蒸发出来,没有任何额外的能量输入,然后穿过聚四氟乙烯膜,作为液体被吸收到电解质中,它让水通过,并100%地阻止可能在电极或膜上造成损害的其他离子。该团队在深圳湾的海水中测试了一个紧凑的11个单元的电解箱,大约有几个中等大小的手提箱那么大。在133天的测试中,它每小时产生约386升氢气,这听起来很多,但如果是在标准大气压下,386升仅代表31.652克的氢气价值。在燃料电池电动车的应用背景下,假设一辆汽车用1公斤的氢气行驶约100公里(62英里),这个11个电池的装置每小时产生的氢气足以驱动一辆汽车行驶约3.2公里(2英里)。不过,这只是一个小型测试装置。就效率而言,该电解器每生产一正常立方米的氢气就会消耗大约5千瓦时。由于氢气每Nm3携带约3.544千瓦时的能量,这个海水电解器以大约71%的效率运行。这当然是目前很多电解槽技术的范围,尽管它没有跟上一些新兴的超高效设计,如Hysata的95%效率的毛细管进料设计。左图:11个电池的测试装置运行了四个多月。右图:每个电池的结构该设备在海水中运行四个多月后仍在全容量运行,测试后的分析显示,电解液中的"杂质离子没有明显增加","表明PTFE膜的离子阻断效率为100%",催化剂层上也没有看到腐蚀。研究人员说,既然从海水中提取淡水的基本原理已经被证明,那么就有很多路径可以探索,以提高性能。更重要的是,它也可以被开发成一个锂收集机。记忆力比我好的读者可能记得我们在2020年发表的一篇报道,其中沙特阿拉伯的阿卜杜拉国王科技大学(KAUST)的一个团队开发并测试了一个海水电解装置,该装置也使用特殊的陶瓷膜从海水中吸出磷酸锂。这是一个完全不同的系统,但团队做了一点测试以观察他们的蒸发过程如何影响海水中锂的浓度。他们发现在几百个小时后,锂的浓度明显增加了42倍,而且他们能够沉淀出一些碳酸锂晶体,这表明随着进一步的发展,这些机器可能能够从氢气和电池金属中产生收入,这可能是在商业吸收和扩展方面的一个巨大推动。该研究发表在《自然》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1335403.htm手机版:https://m.cnbeta.com.tw/view/1335403.htm

封面图片

重温爱因斯坦理论:科学家利用光子晶体产生"伪引力"

重温爱因斯坦理论:科学家利用光子晶体产生"伪引力"扭曲光子晶体和光子晶体的概念图。资料来源:K.Kitamuraet.al.爱因斯坦的相对论早已确定,电磁波(包括光和太赫兹电磁波)的轨迹可以被引力场偏转。科学家们最近从理论上预测,通过在低归一化能量(或频率)区域使晶体变形,复制引力效应(即伪引力)是可能的。东北大学大学院工学研究科的KitamuraKyoko教授说:"我们开始探索光子晶体的晶格变形是否能产生伪重力效应。"DPC中光束轨迹的实验装置和模拟结果光子晶体的作用光子晶体具有独特的特性,使科学家能够操纵和控制光的行为,成为晶体内光的"交通管制器"。光子晶体的构造是将两种或两种以上不同的材料周期性地排列在一起,这些材料具有不同的与光相互作用和减缓光速的能力,并以有规律的重复模式排列。此外,在光子晶体中还观察到了由于绝热变化而产生的伪重力效应。北村和她的同事通过引入晶格畸变对光子晶体进行了改造:元素间的规则间距逐渐变形,从而破坏了质子晶体的网格状模式。这就操纵了晶体的光子带结构,导致光束在中间出现弯曲轨迹--就像光束经过黑洞等大质量天体一样。实验结果,B端口和C端口之间的传输差清楚地显示了DPC中的光束弯曲。资料来源:K.Kitamuraet.al.实验细节和影响具体来说,科学家们在实验中使用了一种原始晶格常数为200微米的硅扭曲光子晶体和太赫兹波。实验成功证明了这些波的偏转。Kitamura补充说:"就像重力使物体的轨迹发生弯曲一样,我们也想出了在某些材料内使光线发生弯曲的方法。这种太赫兹范围内的面内光束转向可用于6G通信。"大阪大学副教授MasayukiFujita说:"在学术上,研究结果表明光子晶体可以利用引力效应,为引力子物理学领域开辟了新的道路。"...PC版:https://www.cnbeta.com.tw/articles/soft/1391051.htm手机版:https://m.cnbeta.com.tw/view/1391051.htm

封面图片

光子极化:聚变技术的下一个突破?

光子极化:聚变技术的下一个突破?最近,普林斯顿等离子体物理实验室的研究人员发现,光子的基本特性之一--极化是拓扑性的,这意味着即使光子在各种材料和环境中转换,它也保持不变。这些发现发表在《物理评论D》上,可能会带来更有效的等离子体加热技术和核聚变研究的进步。偏振是电场在光子周围移动时的方向--向左或向右。根据基本物理定律,光子的偏振决定了它的传播方向,并限制了它的传播路径。因此,仅由具有单一偏振类型的光子组成的光束无法传播到特定空间的每一部分。这项研究的共同作者、美国能源部(DOE)PPPL首席研究物理学家HongQin说:"对光子的基本性质有了更准确的了解,科学家们就能设计出更好的光束,用于加热和测量等离子体。"光子(构成光的粒子)扰动等离子体的艺术家概念图。资料来源:KylePalmer/PPPL通讯部简化复杂问题对光子的研究是解决一个更大、更难的问题的手段--如何利用强光束激发等离子体中的持久扰动,从而帮助维持核聚变所需的高温。这些扰动被称为拓扑波,通常发生在两个不同区域的边界,比如等离子体和托卡马克外缘的真空。它们并不特别奇特--它们自然出现在地球大气中,帮助产生厄尔尼诺现象,这是太平洋中暖水的聚集,会影响北美和南美的天气。要在等离子体中产生这些波,科学家必须对光有更深入的了解--具体来说,就是微波炉中使用的那种射频波--物理学家已经用它来加热等离子体。Qin说:"我们正试图为核聚变寻找类似的波。它们不容易被阻止,因此如果我们能在等离子体中产生它们,就能提高等离子体加热的效率,帮助创造核聚变的条件。这项技术类似于敲钟。就像用锤子敲钟会使金属移动从而产生声音一样,科学家们希望用光敲击等离子体,使它以某种方式摆动,从而产生持续的热量。"揭示光子运动的本质除了发现光子的偏振是拓扑性的,科学家们还发现光子的旋转运动无法分为内部和外部两个部分。联想到地球:它既自转产生昼夜,又绕太阳运行产生四季。这两种运动通常互不影响,例如,地球绕地轴的自转并不取决于它绕太阳的公转。事实上,所有有质量的物体的转动运动都可以这样分开。然而,对于像光子这样没有质量的粒子来说,这种情况是否属实还不清楚。论文第一作者、普林斯顿大学等离子体物理学项目研究生埃里克-帕尔默杜卡(EricPalmerduca)说:"大多数实验人员都认为,光的角动量可以分成自旋角动量和轨道角动量。然而,理论家们一直在争论进行这种拆分的正确方法,或者是否有可能进行这种拆分。我们的工作有助于解决这一争论,表明光子的角动量无法被拆分成自旋和轨道成分。"此外,Palmerduca和Qin还确定,由于光子的拓扑特性、不变特性(如偏振),这两个运动分量无法拆分。这一新奇发现对实验室产生了影响。帕尔默杜卡说:"这些结果意味着,我们需要更好的理论来解释实验中发生的事情。"这些发现提供了对光的行为的见解,进一步推动了研究人员为核聚变研究创造拓扑波的目标。对理论物理学的启示帕尔默杜卡指出,光子的发现证明了PPPL在理论物理学方面的优势。这些发现与一个被称为毛球定理的数学结果有关。"该定理指出,如果你有一个布满毛发的球,你不可能把所有的毛发都梳平,物理学家认为这意味着不可能有一个光源同时向所有方向发送光子,"帕尔默杜卡说。然而,他和秦发现这是不正确的,因为该定理在数学上没有考虑到光子电场可以旋转。帕尔默杜卡称尤金-维格纳是20世纪最重要的理论物理学家之一。维格纳意识到,利用从阿尔伯特-爱因斯坦相对论中得出的原理,他可以描述宇宙中所有可能的基本粒子,甚至是那些尚未被发现的粒子。但是,虽然他的分类系统对有质量的粒子是准确的,但对无质量的粒子(如光子)却产生了不准确的结果。"Qin和我证明,利用拓扑学,我们可以修改维格纳对无质量微粒的分类,给出一个同时适用于所有方向的光子描述。"未来方向在未来的研究中,Qin和帕尔默杜卡计划探索如何创造有益的拓扑波来加热等离子体,而不制造无益的品种来抽走热量:"一些有害的拓扑波可能会在无意中被激发,我们希望了解它们,以便将它们从系统中移除。从这个意义上说,拓扑波就像新品种的昆虫,有些对花园有益,有些则是害虫。"同时,他们对目前的发现感到兴奋。"我们对有助于激发拓扑波的光子有了更清晰的理论认识,"Qin说。"现在是时候建造一些东西了,这样我们就可以利用它们来寻求聚变能。"编译自/scitechdaily...PC版:https://www.cnbeta.com.tw/articles/soft/1434064.htm手机版:https://m.cnbeta.com.tw/view/1434064.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人