科学家开发出无钴低成本电池生产技术

科学家开发出无钴低成本电池生产技术锂陶瓷可作为固体电解质,用于功率更大、成本效益更高的新一代可充电锂离子电池。目前的挑战是找到一种无需高温烧结的生产方法。在最近发表在《AngewandteChemie》杂志上的一篇论文中,一个研究小组介绍了一种无烧结方法,用于高效、低温合成导电结晶形式的此类陶瓷。有两个因素主导着电动汽车电池的发展:一是功率,功率决定了汽车的续航里程;二是成本,成本是与内燃机竞争的关键。美国能源部旨在加快从汽油车向电动车的过渡,并制定了到2030年降低生产成本和提高电池能量密度的宏伟目标。传统的锂离子电池无法实现这些目标。要制造出体积更小、重量更轻、功率更大且更安全的电池,一种极具前景的方法是使用固态电池,其阳极由金属锂而非石墨制成。传统的锂离子电池采用液态有机电解质,并用聚合物薄膜分隔阳极和阴极,而固态电池的所有组件都是固体。薄陶瓷层同时充当固体电解质和隔膜。它能有效防止锂枝晶生长和热失控造成的危险短路。此外,陶瓷电解质不含易燃液体。适用于高能量密度电池的陶瓷电解质/分离器是石榴石型锂氧化物Li7La3Zr2O12-d(LLZO)。这种材料必须与阴极一起在1050°C以上的温度下烧结,才能将LLZO转变为快速导锂的立方晶相,使其充分致密,并与电极牢固结合。然而,超过600°C的温度会破坏可持续的低钴或无钴正极材料的稳定性,同时也会增加生产成本和能耗。我们需要更经济、更可持续的新生产方法。由美国麻省理工学院(剑桥)和德国慕尼黑工业大学的珍妮弗-鲁普(JenniferL.M.Rupp)领导的团队现已开发出这样一种新的合成工艺。他们的新工艺不是基于陶瓷前体化合物,而是基于液态前体化合物,通过连续分解合成法直接致密形成LLZO。为了优化这条合成路线的条件,Rupp和她的团队使用多种方法(拉曼光谱、动态差示扫描量热仪)分析了LLZO从无定形到所需晶体(cLLZO)的多步相变,并绘制了一张时间-温度-转变图。根据他们对结晶过程的深入了解,他们开发出了一种方法,在相对较低的500°C温度下退火10小时后,cLLZO就会变成致密的固态薄膜--无需烧结。在未来的电池设计中,这种方法可以将固体LLZO电解质与可持续阴极相结合,从而避免使用钴等对社会经济至关重要的元素。...PC版:https://www.cnbeta.com.tw/articles/soft/1392297.htm手机版:https://m.cnbeta.com.tw/view/1392297.htm

相关推荐

封面图片

科学家们开发出了一种用于锂离子电池的超低浓度电解质

科学家们开发出了一种用于锂离子电池的超低浓度电解质锂离子电池(LIB)为智能手机和平板电脑提供电力,驱动电动汽车,并在发电厂储存电力。大多数锂离子电池的主要成分是锂钴氧化物(LCO)阴极、石墨阳极以及为阴极和阳极的解耦反应提供移动离子的液态电解质。这些电解质决定了电极上形成的相间层的性质,从而影响电池循环性能等特性。然而,商用电解质大多仍基于30多年前配制的系统:1.0至1.2摩尔/升六氟磷酸锂(LiPF6)在羧酸酯("碳酸溶剂")中的溶液。在过去的十年中,高浓度电解质(>3mol/L)得到了发展,它们有利于形成坚固的无机主导相间层,从而提高了电池性能。然而,这些电解质粘度高、润湿能力差、导电性差。由于需要大量的锂盐,这些电解质的价格也非常昂贵,而这往往是影响可行性的一个关键参数。为了降低成本,超低浓度电解质(<0.3mol/L)的研究也已开始。这些电解质的缺点是,电池电池分解的溶剂多于少量的盐阴离子,从而导致有机物占主导地位,相间层的稳定性较差。由宁波大学(中国)和波多黎各大学里奥皮德拉斯校区(美国)的袁金良、夏岚和吴先勇领导的研究小组现已开发出一种超低浓度电解质,可能适用于锂离子电池的实际应用:LiDFOB/EC-DMC。LiDFOB(二氟草酸硼酸锂)是一种常见的添加剂,价格比LiPF6便宜得多。EC-DMC(碳酸乙酯/碳酸二甲酯)是一种商用碳酸酯溶剂。这种电解液的含盐量低至2重量百分比(0.16摩尔/升),但离子电导率却高达4.6mS/cm,足以使电池正常工作。此外,DFOB-阴离子的特性还能在LCO和石墨电极上形成以无机物为主的坚固相间层,从而在半电池和全电池中实现出色的循环稳定性。目前使用的LiPF6会在潮湿环境中分解,释放出剧毒和腐蚀性的氟化氢气体(HF),而LiDFOB则对水和空气稳定。使用LiDFOB的LIB不需要严格的干燥室条件,而可以在环境条件下制造,这又是一个节约成本的特点。此外,回收问题也会大大减少,从而提高可持续性。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1428465.htm手机版:https://m.cnbeta.com.tw/view/1428465.htm

封面图片

科学家开发出具有8000次充电循环的低成本新型电池

科学家开发出具有8000次充电循环的低成本新型电池访问:NordVPN立减75%+外加3个月时长另有NordPass密码管理器新型锌-木质素电池非常稳定,可以使用8000次以上,同时保持约80%的性能。研究人员开发的电池虽小,但技术是可扩展的。资料来源:ThorBalkhed"太阳能电池板已经变得相对便宜,低收入国家的许多人都采用了太阳能电池板。然而,在赤道附近,太阳会在下午6点左右落下,导致家庭和企业停电。"林雪平大学有机电子学教授ReverantCrispin说:"我们希望这种电池技术,即使性能低于昂贵的锂离子电池,最终也能为这些情况提供解决方案。"他所在的有机电子实验室研究小组与卡尔斯塔德大学和查尔姆斯大学的研究人员合作,开发出了一种基于锌和木质素的电池,这两种材料既经济又环保。就能量密度而言,这种电池与铅酸电池相当,但没有有毒的铅。研究人员ReverantCrispin和ZiyauddinKhan在有机电子实验室。图片来源:ThorBalkhed这种电池非常稳定,可使用8000次以上,同时保持约80%的性能。此外,该电池的电量可保持约一周时间,比其他只需几个小时就能放电的同类锌电池要长得多。虽然锌基电池已经进入市场,但主要是作为不可充电电池,预计在适当引入可充电功能后,锌基电池将成为锂离子电池的补充,并在某些情况下长期取代锂离子电池。"虽然锂离子电池在处理得当的情况下非常有用,但它们可能具有爆炸性,难以回收利用,而且在提取钴等特定元素时会产生环境和人权问题。因此,在能量密度并不重要的情况下,我们的可持续电池提供了一种很有前景的替代品。"锌电池的主要问题是耐用性差,因为锌会与电池电解质溶液中的水发生反应。这种反应会产生氢气和锌的树枝状生长,使电池基本上无法使用。为了稳定锌,使用了一种名为聚丙烯酸酯钾基聚合物水包盐电解质(WiPSE)的物质。林雪平的研究人员现在已经证明,在含有锌和木质素的电池中使用WiPSE时,稳定性非常高。"锌和木质素都非常便宜,而且这种电池很容易回收。如果计算每个使用周期的成本,与锂离子电池相比,它是一种非常便宜的电池,"ZiyauddinKhan说。目前,实验室开发的电池体积较小。不过,研究人员相信,由于木质素和锌的丰富,他们可以低成本制造出大型电池,大小与汽车电瓶差不多,不过,大规模生产还是需要商业公司的参与。ReverantCrispin断言,瑞典作为一个创新型国家,能够帮助其他国家采用更具可持续性的替代方案。"我们有责任帮助低收入国家避免重蹈我们的覆辙。他们在建设基础设施时,需要立即从绿色技术入手。如果引入不可持续的技术,那么数十亿人将会使用这种技术,从而导致气候灾难,"ReverantCrispin说。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1431163.htm手机版:https://m.cnbeta.com.tw/view/1431163.htm

封面图片

科学家开发出具有高性能的本征聚合物电解质

科学家开发出具有高性能的本征聚合物电解质科学家们从一种交联聚合物中开发出了一种固态电解质,这种电解质具有很高的离子传导性和稳定性,有望用于下一代锂电池。这种新材料在循环300次后仍能保持90%以上的电池存储容量,是目前液态电解质更安全的替代品。这种新开发的高导电性固体电解质可能会为固态锂电池铺平道路。电池通过化学反应储存能量,这取决于带电离子通过电解质从阴极流向阳极。本征聚合物电解质聚合反应路径。资料来源:Li等人遗憾的是,聚合物电解质在室温下的离子电导率太低,无法实用。最近生产并被描述为"固态"的其他电解质实际上含有凝胶。QuanfengDong及其同事设计并合成了一种固态电解质,它由1,3-dioxolane(DOL)和季戊四醇缩水甘油醚(PEG)组成的交联聚合物制成。这种本征聚合物电解质(IPE)具有三维(3D)网状结构,在室温下离子电导率高达0.49毫西门子/厘米,远远高于PEO。本征聚合物电解质的锂离子迁移率高达0.85。使用本征聚合物电解质制造的电池在经过300次充放电循环后,仍能保持90%以上的存储容量。作者说,这种材料可能是下一代高能量密度全固态锂电池的良好选择。...PC版:https://www.cnbeta.com.tw/articles/soft/1382137.htm手机版:https://m.cnbeta.com.tw/view/1382137.htm

封面图片

日本科学家开发出新型完全固态可充电空气电池

日本科学家开发出新型完全固态可充电空气电池此外,在可充电空气电池中使用氧化还原活性有机分子克服了与金属有关的问题,包括形成被称为"树枝状"的结构,这种结构会影响电池性能,并对环境造成负面影响。研究人员利用基于二羟基苯醌的有机负极和Nafion聚合物电解质开发出一种全固态可充电空气电池。图片来源:早稻田大学KenjiMiyatake然而,这些电池使用的液态电解质与金属基电池一样,会带来高电阻、浸出效应和易燃性等重大安全隐患。现在,在最近发表于《AngewandteChemieInternationalEdition》的一项新研究中,一组日本研究人员开发出了一种全固态可充电空气电池(SSAB),并对其容量和耐用性进行了研究。这项研究由早稻田大学和山梨大学的宫武健治(KenjiMiyatake)教授领导,早稻田大学的小柳津研一(KenichiOyaizu)教授为共同作者。研究人员选择了一种名为2,5-二羟基-1,4-苯醌(DHBQ)的化学物质及其聚合物聚(2,5-二羟基-1,4-苯醌-3,6-亚甲基)(PDBM)作为负极的活性材料,因为它们在酸性条件下可进行稳定和可逆的氧化还原反应。此外,他们还利用一种名为Nafion的质子传导聚合物作为固态电解质,从而取代了传统的液态电解质。"据我所知,目前还没有开发出基于有机电极和固体聚合物电解质的空气电池,"Miyatake说。在SSAB就位后,研究人员对其充放电性能、速率特性和循环性进行了实验评估。他们发现,与使用金属负极和有机液态电解质的典型空气电池不同,SSAB在有水和氧气存在的情况下不会变质。此外,用聚合物PDBM取代氧化还原活性分子DHBQ可以形成更好的负极。在1mAcm-2的恒定电流密度下,SSAB-DHBQ的每克放电容量为29.7mAh,而SSAB-PDBM的相应值为176.1mAh。这种电池采用基于二羟基苯醌的聚合物负极和基于Nafion的固体电解质,具有很高的库仑效率和放电容量。研究人员还发现,SSAB-PDBM的库仑效率在4C时为84%,在101C时逐渐下降到66%。虽然SSAB-PDBM的放电容量在30个循环后降低到44%,但通过增加负极中质子传导聚合物的含量,研究人员可以将其显著提高到78%。电子显微镜图像证实,添加Nafion提高了基于PDBM的电极的性能和耐用性。这项研究展示了由氧化还原活性有机分子作为负极、质子传导聚合物作为固态电解质以及氧还原扩散型正极组成的SSAB的成功运行。研究人员希望,这将为进一步的进步铺平道路。这项技术可以延长智能手机等小型电子设备的电池寿命,最终为实现无碳社会做出贡献。...PC版:https://www.cnbeta.com.tw/articles/soft/1375365.htm手机版:https://m.cnbeta.com.tw/view/1375365.htm

封面图片

科学家找出导致电池故障的幽灵般的元凶:软短路

科学家找出导致电池故障的幽灵般的元凶:软短路阿贡团队的研究重点是全固体电池,其阳极(负极)由锂金属制成。许多人将这种设备视为电池技术的"圣杯"。为什么这么说呢?因为锂金属可以在很小的空间内储存大量电荷。这意味着,与传统的石墨阳极锂离子电池相比,它能使电动汽车的行驶里程更长。然而,锂金属会与传统电池中的液态电解质发生高度反应,这给操作带来了挑战。电解质是在电池的两个电极之间移动被称为离子的带电粒子的材料,可将储存的能量转化为电能。正常工作的电池放电时,离子从阳极通过电解质流向阴极(正极),与此同时,电子从阳极流向外部设备(如手机或电动汽车电机),然后返回阴极。电子流为设备供电。当电池充电时,电子流会反向流动。锂金属的使用往往会破坏这一过程,在充电过程中,锂枝晶会从阳极生长出来并渗入电解液。如果这些枝晶长得足够大并一直延伸到阴极,它们就会在电极之间形成一条永久性的"导线"。最终,电池中的所有电子都会通过这根线从一个电极流向另一个电极,而不会流出电池为设备供电,这一过程也会阻止离子在电极之间流动。"这就是所谓的内部短路,"阿贡博士后、团队首席研究员迈克尔-坎尼汉(MichaelCounihan)说,电池发生故障后就不再为设备供电。将锂金属阳极置于固态电池中(换句话说,就是使用固态电解质的电池),有可能减少与枝晶相关的挑战,同时还能保留锂的优点。阿贡团队正在开发一种用于电动汽车电池的新型固体电解质,并注意到了一种不寻常的行为。"当我们在实验室中操作电池时,我们观察到了非常小、非常短暂的电压波动,"Counihan说。我们决定进行更深入的研究。研究人员对电池进行了数百小时的反复充电和放电,并测量了电压等各种电气参数。研究小组确定,电池正在经历软短路,这是一种微小的暂时性短路。软短路时,枝晶会从阳极向阴极生长。但增长量比永久短路时要小。一些电子留在电池内部,另一些则可能流向外部设备。电极之间的离子流可能会继续流动。所有这些流动都会发生很大的变化。研究小组与阿贡计算专家合作开发了模型,用于预测软短路过程中的离子流和电子流数量。这些模型考虑到了枝晶尺寸和电解质特性等因素。带有软短路的电池可以持续工作数小时、数天甚至数周。但阿贡研究小组发现,随着时间的推移,枝晶的数量通常会增加,最终导致电池失效。Counihan说:"软短路是通向电池永久故障悬崖的第一步。"动态行为研究小组的进一步研究发现,软短路具有非常动态的行为。它们往往在短短的微秒或毫秒内形成、消失和重组。Counihan说:"这对电池研究人员来说是一个重要的启示。在实验室进行典型的电池测试时,研究人员可能每隔一分钟左右才测量一次电压。在这段时间里,电池可能会错过成千上万软短路的形成和死亡。它们就像一个个小幽灵,在不知不觉中破坏着电池。"软短路最常见的原因是发热。当电子流经枝晶时,会产生热量,类似于家用电器电线的发热,热量会迅速融化,尤其是在周围电解液具有隔热性能的情况下。当枝晶与某些电解质发生反应时,软短路就会溶解,阿贡研究小组正在研究的某些固体电解质会在枝晶到达阴极之前将其切断,从而导致内部短路。在对软短路进行广泛研究的过程中,阿贡团队开发并演示了几种检测和分析软短路现象的新方法。例如,一种方法可以量化软短路对电池电流阻力的影响程度。由于不同的电池组件都可能造成这种阻力,因此分离出软短路造成的阻力可以帮助研究人员更好地评估电池的健康状况。这项研究最近发表在《焦耳》(Joule)杂志上,其中包括近20种检测和分析技术。其中约三分之一的方法来自该团队最近的研究。研究报告的作者从研究界非正式的、未发表的知识中收集了其他方法。Counihan说:"我们意识到,文献中没有一篇论文使用了其中两种以上的技术。为了让这份清单对研究人员更有用,我们加入了关于每种方法优缺点的信息。由于软短线的动态性很强,因此对于研究人员来说,有很多工具可以使用,以便更好地了解软短线的影响。"研究小组希望为世界各地的研究人员提供有关软短路的见解,为他们的工作提供参考。例如,论文中的技术可以帮助推进阻止枝晶生长的硬固体电解质的设计。Counihan说:"当研究人员了解电池中软短路的动态时,他们就能更好地改进材料,避免这些失效途径。"参考文献:MichaelJ.Counihan、KanchanS.Chavan、PallabBarai、DevonJ.Powers、YuepengZhang、VenkatSrinivasan和SanjaTepavcevic合著的《固态电池研究中动态软短路的幽灵威胁》,2023年12月6日,《焦耳》。DOI:10.1016/j.joule.2023.11.007编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1418235.htm手机版:https://m.cnbeta.com.tw/view/1418235.htm

封面图片

斯坦福大学的技术突破为下一代快速充电的锂金属电池创造了可能

斯坦福大学的技术突破为下一代快速充电的锂金属电池创造了可能高级作者WilliamChueh解释说,只要电池有轻微的压痕、弯曲或扭曲,就会导致材料中的纳米级裂缝打开,锂就会侵入固体电解质中,导致其短路。即使是制造过程中引入的灰尘或其他杂质也能产生足够的压力导致故障,他与机械工程系助理教授WendyGu一起指导了这项研究。艺术家渲染图显示,一个探针因施加压力而弯曲,导致其中充满了锂的固体电解质断裂。在右边,探针没有压在电解质上,锂板在陶瓷表面。资料来源:Cube3D固体电解质失效的问题并不新鲜,许多人都研究过这种现象。关于到底是什么原因的理论众说纷纭。有些人说是电子的意外流动造成的,而其他人则指出是化学反应造成的。然而,还有人理论上认为是不同的力量在起作用。在今天(1月30日)发表在《自然-能源》杂志上的一项研究中,共同牵头人GeoffMcConohy、XinXu和TengCui通过严格的、具有统计学意义的实验解释了纳米级缺陷和机械应力如何导致固体电解质失效。世界各地试图开发新的固体电解质可充电电池的科学家们可以围绕这个问题进行设计,甚至将这一发现转化为他们的优势,正如这个斯坦福大学团队的大部分人现在正在研究的那样。能量密集、快速充电、不易燃的锂金属电池能够持续很长时间,可以克服广泛使用电动汽车的主要障碍,还有许多其他好处。今天许多领先的固体电解质是陶瓷的。它们能够实现锂离子的快速传输,并将储存能量的两个电极物理分离。最重要的是,它们是防火的。但是,就像我们家里的陶瓷一样,它们的表面会出现微小的裂缝。研究人员通过60多个实验证明,陶瓷经常被注入纳米级的裂缝、凹痕和裂纹,许多裂纹的宽度不到20纳米。(Chueh和他的团队说,在快速充电期间,这些固有的裂缝会打开,允许锂侵入。一段扫描电子显微镜视频,显示了在固体电解质上发生的镀锂过程在每个实验中,研究人员将一个电探针施加到固体电解质上,形成一个微型电池,并使用电子显微镜实时观察快速充电。随后,他们用离子束作为"手术刀",了解为什么锂在某些地方如愿以偿地聚集在陶瓷表面,而在其他地方则开始钻入,越钻越深,直到锂在固体电解质上搭桥,形成短路。差异在于压力。当电探针仅仅接触到电解质的表面时,即使电池在不到一分钟内被充电,锂也会聚集在电解质上面。然而,当探针压入陶瓷电解质,模仿压痕、弯曲和扭曲的机械应力时,电池短路的可能性更大。现实世界中的固态电池是由一层又一层的阴极-电解质-阳极片叠加而成。电解液的作用是将阴极和阳极物理隔离,但允许锂离子在两者之间自由移动。如果阴极和阳极以任何方式接触或电性连接,如通过金属锂的隧道,就会发生短路。正如Chueh和团队所展示的那样,即使是细微的弯曲、轻微的扭曲,或夹在电解质和锂阳极之间的灰尘斑点,都会造成难以察觉的缝隙。McConohy说:"如果有机会钻进电解质,锂最终会蜿蜒穿过,连接阴极和阳极。当这种情况发生时,电池就会失效。"XinXu、TengCui和GeoffMcConohy-这项新研究的共同主要作者坐在用于这项研究的聚焦离子束/扫描电子显微镜前他们使用扫描电子显微镜记录了这一过程的视频--正是这些显微镜无法看到未经测试的纯电解质中的新生裂缝。这有点像原本完美的路面上出现坑洞的方式。通过雨和雪,汽车轮胎将水打入路面上预先存在的微小缺陷中,产生不断扩大的裂缝,并随着时间的推移而增长。锂实际上是一种软材料,但是,就像坑洞中的水一样,它所需要的只是压力来扩大差距并导致故障。有了他们的新认识,Chueh的团队正在研究如何在制造过程中有意使用这些相同的机械力来强化材料,就像铁匠在生产过程中对刀片进行退火。他们还在研究如何在电解质表面涂上一层涂层,以防止出现裂缝或在出现裂缝时对其进行修复。...PC版:https://www.cnbeta.com.tw/articles/soft/1341789.htm手机版:https://m.cnbeta.com.tw/view/1341789.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人