NIST的40万像素超导相机研发工作取得突破性进展

NIST的40万像素超导相机研发工作取得突破性进展经过计划中的改进,NIST的新型400000像素单线超导相机(同类相机中分辨率最高的相机)将有能力在极低光照条件下捕捉天文图像。图片来源:图片元素来自Pixabay和S.Kelley/NIST。超导照相机可以让科学家捕捉到非常微弱的光信号,无论是来自太空中遥远物体的信号,还是来自人类大脑部分区域的信号。拥有更多的像素可以为科学和生物医学研究开辟许多新的应用领域。NIST相机是由冷却到接近绝对零度的超细电线网格组成的,在电线被光子击中之前,电流在其中移动没有任何阻力。在这些超导纳米线照相机中,即使是一个光子传递的能量也能被检测到,因为它会关闭网格上特定位置(像素)的超导性。将所有光子的位置和强度组合起来,就形成了一幅图像。这个动画描述了特殊的读取系统,它使NIST研究人员能够制造出一台40万超导纳米线单光子照相机,这是同类照相机中分辨率最高的。经过进一步改进后,该相机将非常适合低照度工作,如成像太阳系外的微弱星系或行星、测量基于光子的量子计算机中的光,以及利用近红外线窥视人体组织的生物医学研究。资料来源:S.Kelley/NIST第一台能够探测单光子的超导相机是在二十多年前研制成功的。从那时起,这些设备所包含的像素都不超过几千个,对于大多数应用来说都过于有限。制造像素数量更多的超导照相机是一项严峻的挑战,因为要将数千个冷冻像素中的每个像素都连接到自己的读出线上几乎是不可能的。这一挑战源于相机的每个超导元件都必须冷却到超低温才能正常工作,而将数百万像素中的每个像素单独连接到冷却系统几乎是不可能的。NIST研究人员亚当-麦考恩(AdamMcCaughan)和巴赫罗姆-奥里波夫(BakhromOripov)以及他们在美国宇航局位于加利福尼亚州帕萨迪纳市的喷气推进实验室(JPL)和科罗拉多大学博尔德分校的合作者克服了这一障碍,将许多像素的信号合并到几根室温读出导线上。任何超导线缆都有一个普遍特性,即允许电流自由流动到一定的最大"临界"电流。为了利用这一特性,研究人员在传感器上施加了略低于最大值的电流。在这种情况下,哪怕只有一个光子击中一个像素,也会破坏超导性。电流不再能够无阻力地流过纳米线,而是被分流到与每个像素相连的小型电阻加热元件上。分流电流产生的电信号可被迅速检测到。借鉴现有技术,NIST团队建造的照相机拥有交叉的超导纳米线阵列,形成多行多列,就像井字游戏中的行列一样。每个像素以单根垂直和水平纳米线交叉点为中心的微小区域--由其所在的行和列唯一定义。这种安排使研究小组能够一次测量来自整行或整列像素的信号,而不是记录来自每个像素的数据,从而大大减少了读出线的数量。为此,研究人员将一根超导读出线与像素行平行但不接触,将另一根读出线与像素列平行但不接触。只考虑与行列平行的超导读出线。当一个光子击中一个像素时,分流到电阻加热元件的电流会加热读出线的一小部分,形成一个微小的热点。热点反过来又会产生两个电压脉冲,沿读出线以相反的方向移动,由两端的探测器记录下来。脉冲到达两端探测器的时间差揭示了像素所在的柱。与柱平行的第二条超导读出线也具有类似的功能。探测器可以分辨出短至50万亿分之一秒的信号到达时间差异。它们还能对每秒撞击网格的10万个光子进行计数。团队采用新的读取架构后,奥里波夫在增加像素数量方面取得了快速进展。几周内,像素数量就从20000个跃升至400000个。麦考恩说,这种读出技术可以很容易地扩展到更大的照相机,拥有数千万或数亿像素的超导单光子照相机很快就能问世。在接下来的一年里,该团队计划提高原型相机的灵敏度,使其能够捕捉到几乎每一个进入的光子。这将使该相机能够应对低照度工作,如成像太阳系外的微弱星系或行星、测量基于光子的量子计算机中的光,以及为利用近红外线窥视人体组织的生物医学研究做出贡献。研究人员在10月26日出版的《自然》杂志上报告了他们的研究成果。...PC版:https://www.cnbeta.com.tw/articles/soft/1392539.htm手机版:https://m.cnbeta.com.tw/view/1392539.htm

相关推荐

封面图片

NIST研发的"拨动开关"可以释放量子 帮助制造功能更全面的处理器

NIST研发的"拨动开关"可以释放量子帮助制造功能更全面的处理器该设备由美国国家标准与技术研究院(NIST)的科学家团队推出,包括两个超导量子比特(或称量子比特),量子比特是量子计算机与经典计算机处理芯片中逻辑比特的类似物。这种新策略的核心依赖于一个"拨动开关"装置,它将量子比特连接到一个名为"读出谐振器"的电路上,该电路可以读出量子比特的计算输出。拨动开关装置这个拨动开关可以切换到不同的状态,以调整量子比特与读出谐振器之间的连接强度。当开关关闭时,所有三个元件相互隔离。当开关被打开以连接两个量子比特时,它们就可以相互作用并进行计算。计算完成后,切换开关可以连接任一量子比特和读出谐振器,以检索结果。量子计算机电路中的一个常见问题是,量子比特难以进行计算并清楚地显示计算结果。这张照片显示的是器件的中央工作区。在下部,三个大矩形(浅蓝色)分别代表左右两个量子比特或量子位,以及中间的谐振器。在放大的上部剖面图中,微波通过天线(底部深蓝色大矩形)时,会在SQUID环形(中间较小的白色正方形,边长约20微米)中产生磁场。磁场激活了拨动开关。微波的频率和幅度决定了开关的位置以及量子比特和谐振器之间的连接强度。资料来源:R.Simmonds/NIST提高性能和保真度本文作者之一、NIST物理学家雷-西蒙兹(RaySimmonds)说:"我们的目标是让量子比特保持愉悦,这样它们就能心无旁骛地进行计算,同时还能在我们想要的时候读出它们。这种设备架构有助于保护量子比特,并有望提高我们进行高保真测量的能力,而高保真测量是用量子比特构建量子信息处理器所必需的。"该团队还包括来自马萨诸塞大学洛厄尔分校、科罗拉多大学博尔德分校和雷神BBN技术公司的科学家,他们在最近发表于《自然-物理》杂志的一篇论文中介绍了自己的研究成果。量子计算:现状与挑战量子计算机目前仍处于发展的初级阶段,它将利用量子力学的奇异特性来完成即使是最强大的经典计算机也难以完成的工作,例如通过对化学相互作用进行复杂的模拟来帮助开发新药物。然而,量子计算机设计人员仍然面临许多问题。其中一个问题是,量子电路会受到外部甚至内部噪声的影响,这些噪声来自于制造计算机的材料缺陷。这种噪声本质上是一种随机行为,会在量子比特计算中产生误差。量子计算中的噪声问题当今的量子比特本身就存在噪声,但这并不是唯一的问题。许多量子计算机设计都采用所谓的静态架构,即处理器中的每个量子比特都与相邻的量子比特及其读出谐振器物理连接。将量子比特连接在一起并与其读出器相连的人造线路会使它们受到更多噪声的影响。这种静态架构还有另一个缺点:它们不容易重新编程。静态架构的量子比特可以完成一些相关的工作,但要让计算机执行更广泛的任务,就需要更换不同的处理器设计,采用不同的量子比特组织或布局。(想象一下,每当需要使用不同的软件时,就需要更换笔记本电脑中的芯片,再考虑到芯片需要保持在绝对零度以上一丁点,你就会明白为什么这会带来不便)。可编程拨动开关解决方案该团队的可编程拨动开关避免了上述两个问题。首先,它可以防止电路噪声通过读出谐振器悄悄进入系统,并防止量子比特在本应安静的时候相互对话,这减少了量子计算机中的一个关键噪声源。其次,元件之间开关的打开和关闭是由一列从远处发送的微波脉冲控制的,而不是通过静态结构的物理连接。集成更多这种拨动开关可以成为更容易编程的量子计算机的基础。微波脉冲还可以设定逻辑运算的顺序和序列,这意味着使用该团队的许多拨动开关构建的芯片可以被指示执行任意数量的任务。"这使得芯片可以编程,"西蒙兹说。"芯片上没有完全固定的架构,而是可以通过软件进行更改。"其他优势和未来发展方向最后一个好处是,拨动开关还可以同时开启对两个量子比特的测量。这种要求两个量子比特作为一对显示自己的能力,对于追踪量子计算错误非常重要。这次演示中的量子比特以及拨动开关和读出电路都是由超导元件制成的,这些元件导电时没有电阻,而且必须在非常低的温度下工作。拨动开关本身是由超导量子干涉装置(或称"SQUID")制成的,它对穿过其回路的磁场非常敏感。在需要时,通过附近的天线环路驱动微波电流可以诱导量子比特与读出谐振器之间的相互作用。目前,该研究小组只使用了两个量子比特和一个读出谐振器,但西蒙兹说,他们正在准备一个包含三个量子比特和一个读出谐振器的设计,并计划增加更多的量子比特和谐振器。进一步的研究可以深入了解如何将许多这样的设备串联在一起,从而有可能提供一种方法来构建具有足够量子比特的强大量子计算机,以解决目前还无法解决的各种问题。...PC版:https://www.cnbeta.com.tw/articles/soft/1377797.htm手机版:https://m.cnbeta.com.tw/view/1377797.htm

封面图片

磁性材料高压超导机理研究取得新进展

磁性材料高压超导机理研究取得新进展科学家们努力在实验室中实现高压条件,研究材料在高压下的物理性质,试图发现新物态、新物性、新机理。中山大学物理学院王猛教授课题组自2017年开始搭建金刚石对顶砧压腔高压实验平台,目前已经可以实现百万大气压强,配合同步辐射光源,综合物性测量系统,低温电学测试设备,拉曼光谱仪等手段,可以进行高压下的晶体结构、电输运、直流磁化率、交流磁化率、拉曼光谱测量实验。2020年王猛教授课题组生长了一种新的庞磁阻半导体材料EuTe2单晶样品。通过改变磁场大小,EuTe2单晶样品电阻值可以改变100万倍,通过变化磁场角度电阻值变化也可以达到100万倍,具有超高的磁阻(MR)和磁阻各向异性(AMR)。韩国一研究团队2021年在Nature杂志发文认为EuTe2在发现时具有最高的MR和AMR。磁阻效应是目前计算机高密度读出磁头和磁存储元件的物理基础,曾在2007年获得诺贝尔物理学奖。结合中子衍射等实验及理论分析,王猛教授研究团队最终确定了磁阻机理为自旋结构驱动的电子能带劈裂,导致电子带隙关闭形成较高的磁阻效应。相关成果在美国物理学会杂志发表PhysicalReviewMaterials4,013405(2020)。图1.EuTe2压力下的电阻测量EuTe2为小带隙磁性半导体材料,易于被压力调控。王猛教授课题组利用金刚石对顶砧压腔实验技术对EuTe2进行了高压下的物性研究,发现压力超过5GPa时出现超导电性、在16GPa时EuTe2发生了结构相变,并且在结构相变后依然超导。Eu具有很强的磁性,一般不显示超导电性。然而,在EuTe2中,结构相变前超导电性需要22T的磁场才可以破坏超导电性,远超过常规超导机理估算的临界磁场上限。这个结果引发了一个重要科学问题,EuTe2中高压下发现的超导电性是由于电子和声子耦合导致的常规超导还是其他机制导致的非常规超导?经过实验和理论的系统研究,研究团队确认超过理论值的上临界磁场是由于+2价Eu离子的内建磁场导致。磁场会改变磁结构,而不同磁结构会在样品中形成不同内建磁场。超导电子对感受到的磁场是外加磁场与内建磁场共同作用的结果。当内建磁场与外加磁场方向相反时,外加磁场可以远超过常规超导机理预言的理论值。这正是由Jaccarino和Peter两位科学家在1962年提出的一种磁与超导电子的作用机制,然而在实际材料中较少被观测到。在高压相变后,EuTe2成为非磁性材料,其超导上临界磁场也明显降低,完全符合理论预期。本项工作确定的物理机制可以用来解释一批具有较高上临界磁场但同时具有大磁矩的磁性超导材料。相关成果在近期的Nature出版社旗下期刊发表CommunicationsPhysics6,40(2023)。图2.EuTe2在7.0GPa压力下不同磁性状态对应的超导及临界磁场以上工作第一作者分别为王猛教授团队硕士研究生殷俊杰同学以及孙华蕾副研究员,通讯作者为王猛教授。参与工作的人员包括中山大学物理学院姚道新教授及团队成员、沈冰副教授、侯玉升副教授、王伟良副教授、张云蔚副教授,中山大学化学学院李满荣教授及团队成员,中国人民大学程鹏副教授、张红霞副教授,中国原子能研究院郝丽杰研究员,美国莱斯大学戴鹏程教授等。王猛教授团队开展以上工作得到中山大学百人计划二期项目、国家自然科学基金、广东省基础与应用基础研究重点项目、广东省磁电物性分析与器件重点实验室等支持。论文链接:https://journals.aps.org/prmaterials/abstract/10.1103/PhysRevMaterials.4.013405https://www.nature.com/articles/s42005-023-01155-7...PC版:https://www.cnbeta.com.tw/articles/soft/1350831.htm手机版:https://m.cnbeta.com.tw/view/1350831.htm

封面图片

波音:无人潜航器有望取得突破性进展

波音:无人潜航器有望取得突破性进展通过预先编程,AUV能够探索人类无法到达的海底区域,并且能够在没有人类在船上或控制它们的情况下自主运行。科学家经常使用AUV进行水下研究,石油和天然气公司常使用AUV进行深水调查。不过AUV的最大市场已变成军事领域。AUV在军事海洋勘探中是非常有用的工具,可以帮助获得关键信息,如绘制海底地图、寻找水雷以及提供水下监视。世界各国的海军都在投资研究AUV,以提升他们的水下防御能力。美国国防承包商安杜里尔工业公司在2月份收购了AUV制造商DiveTechnologies,开始从陆地向海上扩张。这笔收购让他们拥有了一款可定制的AUV,名为Dive-LD。安杜里尔工业公司联合创始人帕尔默·勒基(PalmerLuckey)在宣布收购时称:“水面和水下的威胁越来越多,只有机器人系统才能应对。这些系统可以躲避敌人的监视,可以躲避你在空中看到的东西,可以做些只有在水下才能做的事情。”除了对DiveTechnologies的收购,安杜里尔工业公司还在3月份将业务扩展到澳大利亚,并在5月份与澳大利亚国防部达成价值1亿美元的合同,为澳大利亚皇家海军设计和制造三艘超大型AUV。在英国,皇家海军最近向MSubs订购了第一艘名为CETUSXLUUV的AUV,预计将在大约两年内交付。波音公司自20世纪70年代以来始终在致力于AUV的研究,并于近年来与美国海军和DARPA在某些水下机器人项目上进行了合作。EchoVoyager是波音公司的第一个超大型AUV,经过大约五年的设计和开发,于2017年首次开始运营。这艘AUV长约15.5米,与校车体积相当,可用于石油和天然气勘探、长期测量以及石油与天然气公司的基础设施分析。EchoVoyager已经在海上运行了近1万个小时,并以自主航行的方式穿越了数百公里。波音公司MaritimeUndersea业务高级总监安·史蒂文斯(AnnStevens)说,EchoVoyager采用了模块化设计,拥有诸多功能。无论是从体型还是能力方面来说,EchoVoyager都是世界上独一无二的。波音始终在美国海军的资助下开发OrcaXLUUV。2019年2月,该公司赢得了价值4300万美元的合同,制造四款基于波音EchoVoyager设计的AUV。该项目经历了很多延迟,原定于2020年12月交付的OrcaXLUUV现在计划在2024年完工。波音解释称,成本增加以及疫情带来的供应链问题是导致交付推迟的主要原因。史蒂文斯说:“这是一个开发项目,我们正在开发前所未有的突破性技术。我们始终在与海军保持步调一致,并将提供非常棒的AUV。”美国密歇根大学海军建筑和海洋工程系助理教授马阿尼·加法里(MaaniGhaffari)表示,机器人和自动化总体上仍是新兴的科技领域。研究人员大约在五六十年前开始开发AUV,尽管当时建造系统所需传感器的质量和种类有限。如今,传感器变得更小、更便宜、质量更高。加法里说:“我们正处于可以为机器人建造更好、更高效的硬件和传感器的阶段,我们希望在某个时候将部分机器人部署到日常生活中。”然而,在成为日常可用设备之前,AUV仍需要克服诸多挑战。首先,机器人必须能在比空气中更恶劣的环境中工作,空气中较高的密度会产生液压阻力,从而减缓机器人的速度,并更快地耗尽其电量。然而,有些正在开发的AUV,其速度和续航能力都给人留下深刻印象。波音公司表示,预计OrcaXLUUV的续航里程将达到6500海里。安杜里尔工业公司报告说,Dive-LD可以自主执行任务长达10天,并有能力完成持续数周的任务。环境挑战是AUV面临的主要问题,它们的水下通信会受到限制,因为用于在空中传输信息的信号在水中很快就会被吸收,而且AUV上的摄像头清晰度在水下会下降。加法里说,AUV最终是否会被用作监视工具并参与水下战争,更多涉及AI和机器人技术中常见的伦理问题。虽然这些设备可能非常复杂,可以自主做出决定,但当这些决定可能影响人类生命时,人们就会感到担心。加法里补充称:“有人设想,基本上可以把战斗交给机器人而不是士兵,毕竟这有助于减少人员伤亡。但另一方面,当AI可以比人类更快地做出决定和行动时,这可能会增加它们可能造成的破坏力。这是尚未被探索过的前沿领域,我们必须在未来取得实际进展前讨论这些问题。”...PC版:https://www.cnbeta.com.tw/articles/soft/1348151.htm手机版:https://m.cnbeta.com.tw/view/1348151.htm

封面图片

乌克兰:在哈尔科夫取得突破性进展

乌克兰:在哈尔科夫取得突破性进展(早报讯)乌克兰军队星期五(9月9日)突破俄罗斯军队在东北部城市哈尔科夫(Kharkiv)附近的防线,给俄军的补给线构成威胁。俄军向哈尔科夫发射火箭弹反击,造成至少10人受伤,其中包括三名儿童。乌克兰总统泽连斯基星期四发表视频讲话称,过去一周,乌克兰军队“解放了数十个定居点”,在东部和南部地区从俄军手中收复了1000多平方公里的领土。泽连斯基发布的一段视频显示,乌军称他们已经占领东部城镇巴拉克利亚(Balakliia)。这个城镇位于哈尔科夫以南的前线。乌军称,在发起一次让俄军措手不及的袭击后,乌军已经越过前线,并向前推进了约50公里。不过,俄罗斯当局则拒绝就此战况发表评论。一名亲俄官员甘切夫(VitalyGanchev)接受俄罗斯国家电视台采访时说:“我们的防御系统遭到破坏,这件事确实是乌克兰武装部队的重大胜利。”智库战争研究所指出,乌军目前距离库皮安斯克(Kupiansk)只有15公里,那里是俄军在东部战场上长期用来为部队提供补给的主要铁路线的重要枢纽。美国国防部长奥斯汀在布拉格与捷克外长举行的记者会上说:“我们在赫尔松看到成功,我们在哈尔科夫也看到一些成功,这样的战绩非常令人鼓舞。”发布:2022年9月9日10:25PM

封面图片

超导技术的突破:首次展示成对电子之间的自旋关联性

超导技术的突破:首次展示成对电子之间的自旋关联性这种奇怪的行为是阿尔伯特-爱因斯坦将纠缠描述为"远距离的幽灵行动"的原因。虽然它很奇怪,但它是一个重要的现象。事实上,关于光粒子(光子)之间的纠缠的研究还被授予今年的诺贝尔物理学奖。两个电子也可以纠缠在一起--例如在它们的自旋上。在超导体中,电子形成所谓的库珀对,负责产生无损的电流,其中的各个自旋是纠缠在一起的。几年来,瑞士纳米科学研究所和巴塞尔大学物理系的研究人员已经能够从超导体中提取电子对,并在空间上分离这两个电子。这是通过两个量子点--平行连接的纳米电子结构实现的,每个量子点只允许单一电子通过。电子离开(传统)超导体(S)时只能是成对的,而且只能有相反的自旋(箭头向上或向下,红色或蓝色)。如果两个电子的路径都被平行自旋过滤器(这里为自旋向下(蓝色))阻断,原则上自旋向上(红色)的单个电子可以出去,但来自超导体的成对电子被阻断,这在理想情况下会抑制两种电流。资料来源:巴塞尔大学物理系,ScixelChristianSchönenberger教授和AndreasBaumgartner博士的团队与来自IstitutoNanoscienz-CNR和比萨ScuolaNormaleSuperiore的LuciaSorba教授领导的研究人员合作,现在已经能够在实验中早已被预期的理论:来自超导体的电子总是以一对相反的自旋出现。他们今天(11月23日)在科学杂志《自然》上报告了他们的发现。使用一个创新的实验装置,物理学家们能够测量出当一个电子的自旋向下时,另一个电子的自旋是向上的,反之亦然。项目负责人安德烈亚斯-鲍姆加特纳解释说:"我们因此在实验中证明了成对电子的自旋之间的负相关关系。"研究人员通过使用他们在实验室中开发的自旋过滤器实现了这一点。利用微小的磁铁,他们在两个量子点中的每一个产生了单独可调的磁场,将库珀对电子分开。由于自旋也决定了电子的磁矩,所以每次只允许一种特定类型的自旋通过。与平行自旋过滤器相反,对于反平行自旋过滤器,电子对被允许离开超导体,这可以被检测为在两个路径上的电流明显增强。资料来源:巴塞尔大学物理系,Scixel"我们可以调整这两个量子点,以便主要让具有某种自旋的电子通过它们,"第一作者ArunavBordoloi博士解释说。"例如,自旋向上的电子通过一个量子点,自旋向下的电子通过另一个量子点,或者反之亦然。如果两个量子点都被设定为只通过相同的自旋,那么两个量子点中的电流就会减少,尽管单个电子很可能通过一个量子点。""通过这种方法,我们能够首次从超导体中检测到电子自旋之间的这种负相关关系,"AndreasBaumgartner总结道。"我们的实验是第一步,但还不是电子自旋纠缠的明确证明,因为我们不能任意设置自旋过滤器的方向,但我们正在努力。"这项研究最近发表在《自然》杂志上,被认为是朝着进一步实验调查量子力学现象迈出的重要一步,例如固体中粒子的纠缠,这也是量子计算机的一个关键组成部分。...PC版:https://www.cnbeta.com.tw/articles/soft/1333623.htm手机版:https://m.cnbeta.com.tw/view/1333623.htm

封面图片

科学家在远距离无线充电效率方面取得突破性进展

科学家在远距离无线充电效率方面取得突破性进展考虑辐射损耗对于高效的长距离无线电力传输至关重要。阿尔托大学(AaltoUniversity)的工程师们开发出了一种改进的远距离无线充电方法。通过增强发射天线和接收天线之间的相互作用以及利用"辐射抑制"现象,他们加深了我们对无线功率传输的理论理解,超越了传统的感应式方法,这是该领域的一大进步。短距离充电,如通过感应垫充电,利用近场磁场传输电能,效率很高,但距离较远时,效率就会急剧下降。新的研究表明,通过抑制发送和接收电能的环形天线的辐射阻抗,可以在长距离上保持这种高效率。两根环形天线(半径:3.6厘米)可以在相距18厘米的地方相互传输电力。图片来源:NamHa-Van/AaltoUniversity在此之前,该实验室曾开发出一种全向无线充电系统,可以在任何方向为设备充电。现在,他们用一种新的无线充电动态理论扩展了这项工作,该理论更仔细地研究了近距离(非辐射)和远距离(辐射)的距离和条件。他们特别表明,利用百兆赫兹范围内的最佳频率,在距离约为天线尺寸五倍的情况下,可以实现超过80%的高传输效率。第一作者、阿尔托大学博士后研究员南-哈-万(NamHa-Van)说:"我们希望在有效传输功率与辐射损耗之间取得平衡,因为辐射损耗在较长距离内总会发生。事实证明,当环形天线中的电流具有相等的振幅和相反的相位时,我们就可以抵消辐射损耗,从而提高效率"。研究人员创建了一种方法,可以对任何无线电力传输系统进行数学或实验分析。这样就能更全面地评估近距离和远距离的电力传输效率,这在以前是没有过的。然后,他们测试了两个环形天线(见图)之间的充电工作原理,这两个天线的距离相对于它们的尺寸来说相当大,从而确定了辐射抑制是有助于提高传输效率的机制。Ha-Van说:"这一切都是为了找出无线电力传输的最佳设置,无论是近距离还是远距离。有了我们的方法,我们现在可以将传输距离扩展到传统无线充电系统之外,同时保持高效率。无线电力传输不仅对手机和小工具很重要,电池容量有限的生物医学植入物也能从中受益。Ha-Van及其同事的研究还能考虑到人体组织等可能阻碍充电的障碍。"...PC版:https://www.cnbeta.com.tw/articles/soft/1390351.htm手机版:https://m.cnbeta.com.tw/view/1390351.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人