麻省理工学院的列车式新设计可利用40%的太阳热能生产清洁氢燃料

麻省理工学院的列车式新设计可利用40%的太阳热能生产清洁氢燃料在最近发表在《太阳能杂志》上的一项研究中,工程师们阐述了一个可以高效生产"太阳能热化学氢"的系统的概念设计。该系统利用太阳的热量直接分裂水并产生氢气,这是一种清洁燃料,可为长途卡车、轮船和飞机提供动力,同时在此过程中不会排放任何温室气体。如今,氢主要是通过涉及天然气和其他化石燃料的工艺生产出来的,从生产开始到最终使用的整个过程来看,这种原本绿色的燃料更像是一种"灰色"能源。相比之下,太阳能热化学制氢(STCH)提供了一种完全无排放的替代能源,因为它完全依靠可再生的太阳能来驱动制氢。但迄今为止,现有的STCH设计效率有限:只有大约7%的太阳光被用来制氢,其结果是产量低、成本高。麻省理工学院的工程师们设计出了一种能有效利用太阳热能分水制氢的系统。图片来源:AhmedGhoniem、AniketPatankar等人提供麻省理工学院的研究小组估计,他们的新设计可以利用多达40%的太阳热能生成更多的氢气,这是向实现太阳能燃料迈出的一大步。效率的提高可以降低系统的总体成本,使STCH成为一种潜在的、可扩展的、经济实惠的选择,帮助交通行业实现去碳化。这项研究的第一作者、麻省理工学院机械工程罗纳德-C-克兰(RonaldC.Crane)教授艾哈迈德-高尼姆(AhmedGhoniem)说:"我们认为氢是未来的燃料,因此需要廉价、大规模地生成氢。我们正在努力实现能源部的目标,即到2030年以每公斤1美元的价格制造出绿色氢气。为了提高经济效益,我们必须提高效率,确保我们收集的大部分太阳能都用于制氢。"Ghoniem的研究合著者包括:第一作者、麻省理工学院博士后AniketPatankar;麻省理工学院材料科学与工程教授HarryTuller;滑铁卢大学的Xiao-YuWu;以及韩国梨花女子大学的WonjaeChoi。太阳能站与其他拟议的设计类似,麻省理工学院的系统将与现有的太阳能热源配对,例如聚光太阳能发电站(CSP)--一个由数百面镜子组成的圆形阵列,收集阳光并反射到中央接收塔。然后,STCH系统会吸收接收器的热量,并将其用于分裂水和产生氢气。这一过程与电解法截然不同,后者利用电能而不是热能来分裂水。概念STCH系统的核心是一个两步热化学反应。第一步,水以蒸汽的形式接触金属。这使得金属从蒸汽中吸收氧气,留下氢气。这种金属"氧化"类似于铁在水中生锈,但速度更快。一旦氢被分离出来,氧化(或生锈)的金属就会在真空中重新加热,从而逆转生锈过程并使金属再生。除去氧气后,金属可以冷却并再次暴露在蒸汽中以产生更多的氢。这个过程可以重复数百次。MIT研究人员设计的系统旨在优化这一过程。整个系统就像一列在环形轨道上运行的箱形反应器。在实践中,这条轨道将环绕一个太阳能热源(如CSP塔)设置。列车上的每个反应器都将容纳进行氧化还原或可逆生锈过程的金属。每个反应器将首先经过一个热站,在那里暴露在高达1500摄氏度的太阳热量下。这种极端高温会有效地从反应堆的金属中抽出氧气。这样,金属就会处于"还原"状态--随时准备从蒸汽中获取氧气。为此,反应堆将转移到温度约为1000摄氏度的冷却站,在那里接触蒸汽以产生氢气。铁锈和铁轨其他类似的STCH概念都遇到了一个共同的障碍:如何处理反应堆冷却时释放出的热量。如果不对这些热量进行回收和再利用,系统的效率就会很低,无法实用。第二个挑战是如何创造一个高能效的真空环境,使金属能够除锈。一些原型利用机械泵产生真空,但对于大规模氢气生产来说,这种泵能耗太高,成本太高。为了应对这些挑战,麻省理工学院的设计采用了几种节能变通方法。为了回收从系统中逸出的大部分热量,圆形轨道两侧的反应器可以通过热辐射交换热量;热的反应器被冷却,冷的反应器被加热。这样就能将热量保持在系统内。研究人员还增加了第二组反应堆,它们将围绕第一列反应堆以相反的方向移动。这列外反应器的运行温度通常较低,用于从较热的内反应器中排出氧气,而无需使用耗能的机械泵。这些外层反应堆将装载第二种也很容易氧化的金属。当它们环绕一圈时,外层反应堆将吸收内层反应堆中的氧气,有效地去除原有金属的锈迹,而无需使用耗能的真空泵。两组反应堆将连续运行,分别产生纯氢和纯氧。研究人员对这一概念设计进行了详细模拟,发现它将显著提高太阳能热化学制氢的效率,从以前设计所证明的7%提高到40%。Ghoniem说:"我们必须考虑到系统中的每一点能量,以及如何使用这些能量,从而最大限度地降低成本。有了这个设计,我们发现一切都可以用来自太阳的热量来驱动。它能够利用40%的太阳热能生产氢气。"明年,该团队将建造一个系统原型,计划在能源部实验室的聚光太阳能设施中进行测试。Patankar解释说:"该系统完全投入使用后,将被安置在太阳能发电场中间的一座小楼里。建筑物内可以有一列或多列火车,每列火车上有大约50个反应堆。我们认为这可以是一个模块化系统,你以在传送带上增加反应器,从而扩大氢气生产规模。"...PC版:https://www.cnbeta.com.tw/articles/soft/1393517.htm手机版:https://m.cnbeta.com.tw/view/1393517.htm

相关推荐

封面图片

麻省理工学院揭幕"质子之舞": 开拓能源新时代

麻省理工学院揭幕"质子之舞":开拓能源新时代麻省理工学院的化学家们首次详细描绘了这些质子耦合电子转移是如何在电极表面发生的。他们的研究成果可以帮助研究人员设计出更高效的燃料电池、电池或其他能源技术。麻省理工学院化学和化学工程教授、该研究的资深作者YogeshSurendranath说:"我们在这篇论文中取得的进展是研究和理解了这些电子和质子如何在表面部位耦合的性质,这与催化反应有关,而催化反应在能量转换装置或催化反应中非常重要。"在他们的研究成果中,研究人员能够准确追踪电极周围电解质溶液pH值的变化如何影响电极内质子运动和电子流动的速度。麻省理工学院研究生诺亚-刘易斯(NoahLewis)是这篇论文的第一作者,论文最近发表在《自然-化学》上。麻省理工学院前博士后RyanBisbey、麻省理工学院研究生KarlWestendorff和耶鲁大学研究科学家AlexanderSoudackov也是这篇论文的作者。质子传递质子耦合电子转移是指一种分子(通常是水或酸)将质子转移到另一种分子或电极表面,从而刺激质子接受者也接受一个电子。这种反应已被广泛应用于能源领域。"这些质子耦合电子转移反应无处不在。它们通常是催化机制中的关键步骤,对于制氢或燃料电池催化等能量转换过程尤为重要,"Surendranath说。在制氢电解槽中,这种方法用于从水中去除质子,并在质子上添加电子以形成氢气。在燃料电池中,当质子和电子从氢气中移出并加入氧气形成水时,就会产生电能。施加电势会导致质子从氢离子(右图)转移到电极表面。利用具有分子定义质子结合位点的电极,麻省理工学院的研究人员为这些界面质子耦合电子转移反应建立了一个通用模型。图片来源:研究人员提供质子耦合电子转移在许多其他类型的化学反应中都很常见,例如二氧化碳还原(通过添加电子和质子将二氧化碳转化为化学燃料)。当质子接受体是分子时,科学家们可以精确控制每个分子的结构,并观察电子和质子如何在分子间传递,因此他们已经对这些反应的发生过程有了很多了解。然而,当质子耦合电子转移发生在电极表面时,这一过程就更难研究了,因为电极表面通常非常异质,质子有可能与许多不同的位点结合。为了克服这一障碍,麻省理工学院的研究小组开发出一种设计电极表面的方法,使他们能够更精确地控制电极表面的组成。他们的电极由石墨烯薄片组成,表面附着有机含环化合物。每个有机分子的末端都有一个带负电荷的氧离子,它可以接受周围溶液中的质子,从而使电子从电路流入石墨表面。Surendranath说:"我们可以创造出一种电极,它不是由各种各样的位点组成,而是由单一类型的非常明确的位点组成的统一阵列,每个位点都能以相同的亲和力结合质子。由于我们拥有这些非常明确的位点,这让我们能够真正揭示这些过程的动力学"。利用这个系统,研究人员能够测量流向电极的电流,从而计算出平衡状态下质子向表面氧离子转移的速率--质子向表面捐赠的速率和质子从表面转移回溶液的速率相等的状态。他们发现,周围溶液的pH值对这一速率有显著影响:最高速率出现在pH值的两端--酸性最强的pH值为0,碱性最强的pH值为14。为了解释这些结果,研究人员根据电极可能发生的两种反应建立了一个模型。在第一种反应中,强酸性溶液中高浓度的氢离子(H3O+)将质子传递给表面的氧离子,生成水。在第二种情况下,水将质子传递给表面氧离子,生成氢氧根离子(OH-),氢氧根离子在强碱性溶液中浓度较高。不过,pH值为0时的速度比pH值为14时的速度快四倍,部分原因是氢离子释放质子的速度比水快。需要重新考虑的反应研究人员还惊奇地发现,这两个反应的速率并不是在中性pH值为7(氢铵和氢氧根的浓度相等)时相等,而是在pH值为10(氢氧根离子的浓度是氢铵的100万倍)时相等。该模型表明,这是因为涉及氢𬭩或水提供质子的前向反应比涉及水或氢氧化物去除质子的后向反应对总速率的贡献更大。研究人员说,关于这些反应如何在电极表面发生的现有模型假定,前向反应和后向反应对总速率的贡献相同,因此新发现表明,可能需要重新考虑这些模型。Surendranath说:"这是默认的假设,即正向和逆向反应对反应速率的贡献相同。我们的发现确实令人大开眼界,因为这意味着人们用来分析从燃料电池催化到氢进化等一切问题的假设可能是我们需要重新审视的。"研究人员目前正在利用他们的实验装置研究向电极周围的电解质溶液中添加不同类型的离子会如何加快或减慢质子耦合电子流的速度。刘易斯说:"通过我们的系统,我们知道我们的位点是恒定的,不会相互影响,因此我们可以读出溶液的变化对表面反应的影响。"编译自//scitechdaily...PC版:https://www.cnbeta.com.tw/articles/soft/1424095.htm手机版:https://m.cnbeta.com.tw/view/1424095.htm

封面图片

麻省理工学院和哈佛大学工程师成功将二氧化碳转化为甲酸盐燃料

麻省理工学院和哈佛大学工程师成功将二氧化碳转化为甲酸盐燃料现在,麻省理工学院和哈佛大学的研究人员已经开发出一种高效的工艺,可以将二氧化碳转化为甲酸盐,甲酸盐是一种液态或固态物质,可以像氢气或甲醇一样用于燃料电池和发电。甲酸钾或甲酸钠已经形成工业规模,通常用作道路和人行道的除冰剂,它无毒、不易燃、易于储存和运输,并能在普通钢罐中保持稳定,在生产几个月甚至几年后仍可使用。效果图显示了灰色桌子上的三个部分:顶部是白色的房屋模型;燃料电池夹在两块金属板之间,周围漂浮着球形分子;底部是电解槽,看起来与燃料电池相似,周围也漂浮着分子。图片来源:哈佛大学设计研究生院ShuhanMiao麻省理工学院博士生张震、任志初和亚历山大-奎恩(AlexanderH.Quinn)、哈佛大学博士生奚大为和麻省理工学院教授李菊最近在《细胞报告物理科学》(CellReportsPhysicalScience)杂志上发表的一篇开放存取论文中描述了这一新工艺。整个过程包括捕获气体并将其电化学转化为固体甲酸盐粉末,然后将其用于燃料电池发电。不过,研究人员希望它可以扩展,以便为个人家庭提供无排放的热能和电力,甚至用于工业或电网规模的应用。提高效率和实用性其他将二氧化碳转化为燃料的方法通常涉及两个阶段:首先,通过化学方法捕获气体并将其转化为碳酸钙等固体形式,然后加热该材料以驱除二氧化碳并将其转化为一氧化碳等燃料原料。第二步的效率非常低,通常只能将不到20%的气态二氧化碳转化为所需产品。相比之下,新工艺的转化率远远超过90%,而且不需要低效的加热步骤,首先将二氧化碳转化为一种中间形式,即液态金属碳酸氢盐。然后,在使用低碳电力(如核能、风能或太阳能)的电解槽中,通过电化学方法将这种液体转化为液态甲酸钾或甲酸钠。然后,生产出的高浓度液态甲酸钾或甲酸钠溶液可以通过太阳能蒸发等方法进行干燥,生产出高度稳定的固体粉末,可以在普通钢罐中储存长达数年甚至数十年。带有碳酸氢盐阴极、中间缓冲层、阳离子交换膜和水阳极的电沸腾器配置。资料来源:哈佛大学设计研究生院ShuhanMiao核科学与工程系和材料科学与工程系联合任职的李说,团队开发的几个优化步骤在将低效化学转换过程转变为实用解决方案方面发挥了重要作用。转化过程和应用碳捕集与转化过程首先是基于碱性溶液的捕集,将发电厂排放等高浓度气流或极低浓度来源(甚至是露天)的二氧化碳浓缩成液态金属碳酸氢盐溶液。然后,通过阳离子交换膜电解槽,这种碳酸氢盐被电化学转化为固体甲酸盐晶体,其碳效率超过96%,这一点已在研究小组的实验室规模实验中得到证实。这些晶体具有无限期的保质期,非常稳定,可以储存数年甚至数十年而几乎没有损耗。相比之下,即使是现有最好的实用氢气储存罐,每天也会有约1%的气体泄漏,这就排除了任何需要长年储存的用途。甲醇是另一种被广泛探讨的将二氧化碳转化为燃料电池所需的燃料的替代品,但甲醇是一种有毒物质,在泄漏可能对健康造成危害的情况下,甲醇很难被改造成燃料电池所需的燃料。而甲酸盐则被广泛使用,根据国家安全标准,甲酸盐被认为是无害的。技术改进该工艺的效率之所以能大幅提高,主要得益于几项改进。首先,膜材料及其配置的精心设计克服了以前尝试这种系统时遇到的一个问题,即某些化学副产品的堆积会改变pH值,导致系统的效率随着时间的推移而逐渐降低。"传统上,很难实现长期、稳定、持续的原料转化,"张说。"我们系统的关键在于实现稳态转化的pH值平衡。"为此,研究人员进行了热力学建模,以设计新工艺,使其达到化学平衡,pH值保持稳定,酸度不会随时间变化。因此,它可以长期高效地运行。在他们的测试中,该系统运行了200多个小时,产量没有明显下降。整个过程可在环境温度和相对较低的压力(约为大气压的五倍)下完成。另一个问题是,不必要的副反应会产生其他无用的化学产品,但研究小组想出了一个办法,通过引入一个额外的富含碳酸氢盐的玻璃纤维棉"缓冲"层来阻止这些副反应。研究小组还建造了一个燃料电池,专门针对使用这种甲酸盐燃料发电进行了优化。储存的甲酸盐颗粒只需溶解在水中,然后根据需要泵入燃料电池。虽然固体燃料比纯氢重得多,但考虑到储存氢气所需的高压气罐的重量和体积,最终的结果是,在给定储存体积的情况下,电力输出接近平价。潜在应用研究人员说,甲酸盐燃料可以应用于从家用设备到大型工业用途或电网规模的存储系统等任何领域。最初的家庭应用可能需要一个与冰箱大小相当的电解装置,用来捕捉二氧化碳并将其转化为甲酸盐,然后储存在地下或屋顶的储罐中。然后,在需要时,将粉末状固体与水混合,送入燃料电池,提供电力和热量。张说:"这适用于社区或家庭示范,但我们相信,将来它也可能适用于工厂或电网。"西北大学化学系教授、电气与计算机工程系教授泰德-萨金特(TedSargent)说:"甲酸盐经济是一个引人入胜的概念,因为金属甲酸盐非常良性和稳定,是一种引人注目的能量载体。作者们证明了从碳酸氢盐原料到甲酸盐的液-液转换效率得到了提高,并证明了这些燃料以后可以用来发电。"...PC版:https://www.cnbeta.com.tw/articles/soft/1395963.htm手机版:https://m.cnbeta.com.tw/view/1395963.htm

封面图片

麻省理工学院研究人员开发出超薄轻量级太阳能电池

麻省理工学院研究人员开发出超薄轻量级太阳能电池它们的重量是传统太阳能电池板的百分之一,每公斤产生的能量是其18倍,并且是由半导体油墨制成的,使用的印刷工艺在未来可以扩展到大面积的制造。由于这些太阳能电池非常薄和轻,它们可以被贴在许多不同的表面上。例如,它们可以被集成到船帆上,以便在海上提供电力,粘附在灾难恢复行动中部署的帐篷和防水布上,或者应用到无人机的机翼上,以扩大其飞行范围。这种轻量级的太阳能技术可以很容易地集成到建筑环境中,而且安装需求很小。"用于评估一种新的太阳能电池技术的指标通常仅限于其电力转换效率和以每瓦美元计算的成本。同样重要的是可整合性--新技术可以被改造的容易程度。轻质太阳能织物能够实现可整合性,为目前的工作提供了动力。我们努力加快太阳能的采用,因为目前迫切需要部署新的无碳能源,"法里博尔兹-马西赫新兴技术主席、有机和纳米结构电子实验室(ONE实验室)负责人、麻省理工学院纳米实验室主任、描述这项工作的新论文的资深作者弗拉基米尔-布洛维奇说。与Bulović一起撰写论文的还有共同主要作者MayuranSaravanapavanantham,他是麻省理工学院电气工程和计算机科学的研究生;以及JeremiahMwaura,他是麻省理工学院电子研究实验室的研究科学家。该研究最近发表在《小方法》杂志上。瘦身后的太阳能电池传统的硅基太阳能电池是脆弱的,因此它们必须被包裹在玻璃中,并被包装在厚重的铝制框架中,这限制了它们的部署地点和方式。六年前,ONE实验室团队使用一种新兴的薄膜材料生产太阳能电池,其重量非常轻,可以放在肥皂泡上。但是这些超薄的太阳能电池是使用复杂的、基于真空的工艺制造的,这些工艺可能是昂贵的,并且在扩大规模方面具有挑战性。在这项工作中,他们着手开发完全可打印的薄膜太阳能电池,使用基于墨水的材料和可扩展的制造技术。为了生产太阳能电池,他们使用了可打印电子油墨形式的纳米材料。在MIT.nano洁净室工作时,他们使用一个槽模涂布机为太阳能电池结构涂上一层电子材料,该涂布机将电子材料层沉积到准备好的、可释放的基底上,基底的厚度只有3微米。使用丝网印刷(一种类似于在丝印T恤上添加图案的技术),将电极沉积在结构上以完成太阳能模块。然后,研究人员可以将厚度约为15微米的印刷模块从塑料衬底上剥离,形成超轻超薄的太阳能设备。但是这种薄而独立的太阳能模块在处理上具有挑战性,很容易撕裂,这将使它们难以部署。为了解决这一挑战,麻省理工学院的团队寻找一种轻质、灵活和高强度的基材,他们可以将太阳能电池粘在上面。他们认为织物是最佳的解决方案,因为它们提供了机械弹性和灵活性,而且重量增加很少。他们找到了一种理想的材料--一种每平方米仅重13克的复合织物,商业上称为迪尼玛面料。这种织物由纤维制成,其强度非常高,曾被用作绳索,将沉没的邮轮"科斯塔-康科迪亚"号从地中海底部吊起。通过添加一层只有几微米厚的紫外线固化胶水,他们将太阳能模块粘在这种织物的薄片上。这就形成了一个超轻的、机械上坚固的太阳能结构。"虽然直接在织物上印刷太阳能电池可能看起来更简单,但这将限制可能的织物或其他接收表面的选择,使其在化学上和热上与制造设备所需的所有加工步骤兼容。Saravanapavanantham解释说:"我们的方法将太阳能电池的制造与最终的集成工艺分离开来"。胜过传统太阳能电池当他们测试该装置时,麻省理工学院的研究人员发现它在独立的情况下每公斤可以产生730瓦的功率,如果部署在高强度的迪尼玛织物上,每公斤可以产生约370瓦的功率,这比传统太阳能电池的每公斤功率高约18倍。"在马萨诸塞州,一个典型的屋顶太阳能装置约为8000瓦特。他说:"为了产生同样的电力,我们的织物光伏电池只需在房子的屋顶上增加大约20公斤(44磅)的重量。"他们还测试了他们设备的耐用性,发现即使在将织物太阳能电池板滚动和展开500多次后,电池仍能保持其最初发电能力的90%以上。虽然他们的太阳能电池比传统的电池要轻得多,也灵活得多,但它们需要被包裹在另一种材料中,以保护它们免受环境影响。用于制造电池的碳基有机材料可以通过与空气中的水分和氧气相互作用而被改变,这可能会使其性能劣化。将这些太阳能电池包裹在沉重的玻璃中,就像传统的硅太阳能电池的标准做法一样,会将目前的进步价值降到最低,因此该团队目前正在开发超薄的包装解决方案,这只会使目前超轻设备的重量增加一小部分。研究人员正在努力去除尽可能多的非太阳能活性材料,同时仍然保留这些超轻和柔性太阳能结构的外形和性能。例如,可以通过印刷可释放的基材来进一步简化制造过程,相当于用来制造我们设备中其他层的过程。这将加速这项技术向市场的转化。...PC版:https://www.cnbeta.com.tw/articles/soft/1340623.htm手机版:https://m.cnbeta.com.tw/view/1340623.htm

封面图片

绿氢技术大突破!MIT新系统效率破纪录 成本料更低

绿氢技术大突破!MIT新系统效率破纪录成本料更低如今,氢气主要是利用天然气和其他化石燃料作为能源而进行生产的,这使得从生产开始到最终使用,这种原本绿色的燃料更像是一种“灰色”能源。相比之下,STCH提供了一种完全零排放的替代方案,因为它完全依赖可再生太阳能来驱动氢的生产。然而,到目前为止,现有的STCH设计效率有限:只有大约7%的射入阳光被用来制造氢气。迄今为止的结果是低产量和高成本。麻省理工学院的研究小组估计,他们的新设计可以利用高达40%的太阳热量来产生更多的氢气,这是实现太阳能燃料的一大步。效率的提高可以降低系统的总体成本,使STCH成为一个潜在的可扩展的、负担得起的选择,以帮助运输行业脱碳。该研究的主要作者AhmedGhoniem教授表示,“我们认为氢是未来的燃料,有必要廉价、大规模地生产氢。我们正在努力实现能源部的目标,即到2030年以每公斤1美元的价格生产绿色氢。为了提高经济效益,我们必须提高效率,并确保我们收集的大部分太阳能用于生产氢气。”具体而言,与其他提出的设计类似,MIT的系统将与现有的太阳能热源相结合,比如聚光太阳能发电厂(CSP)——一个由数百面镜子组成的圆形阵列,收集阳光并将其反射到中央接收塔。然后STCH系统吸收接收器的热量并引导其分解水并产生氢气。值得注意的事,这个过程与电解非常不同,电解使用电而不是热来分解水。概念性STCH系统的核心是两步热化学反应。在第一步中,水以蒸汽的形式暴露在金属中。这使得金属从蒸汽中吸收氧气,留下氢气。这种金属“氧化”类似于铁在水中的生锈,但发生的速度要快得多。一旦氢被分离,氧化(或生锈)的金属在真空中重新加热,这可以逆转生锈过程并使金属再生。除去氧气后,金属可以冷却并再次暴露在蒸汽中以产生更多的氢。这个过程可以重复数百次。每个反应堆将首先通过一个热站,在那里它将暴露在高达1500摄氏度的太阳热量下。这种极端的高温会有效地将氧气从反应堆的金属中抽出。然后,这种金属将处于“还原”状态——准备从蒸汽中吸收氧气。为了实现这一目标,反应堆将转移到一个温度在1000摄氏度左右的较冷的站,在那里它将暴露在蒸汽中产生氢气。研究人员对概念设计进行了详细的模拟,发现它将显著提高太阳能热化学制氢的效率,从之前设计的7%提高到40%。“我们必须考虑系统中的每一点能量,以及如何使用它,以最大限度地降低成本,”Ghoniem说,“通过这种设计,我们发现一切都可以通过来自太阳的热量来提供动力。它能够利用40%的太阳热量来产生氢气。”明年,该团队将建立一个系统的原型,他们计划在目前资助该项目的能源部实验室的集中太阳能发电设施中进行测试。...PC版:https://www.cnbeta.com.tw/articles/soft/1394287.htm手机版:https://m.cnbeta.com.tw/view/1394287.htm

封面图片

麻省理工学院的瘦身版太阳能电池将使屋顶只增重20公斤

麻省理工学院的瘦身版太阳能电池将使屋顶只增重20公斤该技术背后的麻省理工学院团队试图在其之前的材料科学进展的基础上继续发展,在2016年最终完成了超薄太阳能电池,其重量足以压在肥皂泡上而不致破裂。正如我们多年来所关注的其他薄、轻、灵活的太阳能电池一样,这指向了各种可能性,从基于纸张的电子产品到可以在一天中收集能量的轻量级可穿戴设备。尽管有这样的潜力,该团队仍有一些问题需要解决,太阳能电池的制造技术需要真空室和昂贵的蒸镀方法。为了扩大该技术的规模,科学家们现在已经转向基于墨水的可打印材料,以简化该过程。这首先是以可打印的半导体油墨形式的纳米材料,当涉及到电子技术时,这是一项具有广泛潜力的技术。这些材料与可打印的电极一起沉积在厚度仅为3微米的塑料基材上,形成一个太阳能模块。然后,该模块可以被剥离并粘在一个织物基底上,该基底提供了防止撕裂所需的机械强度,同时增加了最小的重量。麻省理工学院的柔性新太阳能电池是传统太阳能电池板重量的百分之一成品是一种柔性和超轻的太阳能电池,其重量是传统太阳能电池板的百分之一,但每公斤能产生18倍的能量。在测试中,该团队发现太阳能电池在粘附在织物上时,每公斤(2.2磅)可产生370瓦特,但在单独站立时可达到730瓦特。"在马萨诸塞州,一个典型的屋顶太阳能装置大约是8000瓦,"共同主要作者MayuranSaravanapavanantham说。"为了产生相同数量的电力,我们的织物光伏只需在房子的屋顶上增加大约20公斤(44磅)。"该团队的测试还表明,织物太阳能电池板可以被卷起和展开500多次,同时保持其90%的发电能力,这预示着其耐用性。该团队从这里开始努力解决的问题包括环境退化问题,需要某种形式的超薄包装来保护太阳能电池免受外界影响。麻省理工学院电子研究实验室的研究科学家JeremiahMwaura说:"将这些太阳能电池包裹在厚重的玻璃中,就像传统的硅太阳能电池的标准做法一样,很快会抵消掉技术的进步价值,因此该团队目前正在开发超薄的包装解决方案,这只会使目前超轻设备的重量增加一小部分。"如果这些问题能够得到解决,太阳能电池的薄型和轻量可以使它们找到各种用途。将它们应用于船帆、灾后重建中的帐篷外侧或无人机的机翼是其中的一些例子,但理论上它们几乎可以部署在任何地方用于发电。这项研究发表在《小方法》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1335113.htm手机版:https://m.cnbeta.com.tw/view/1335113.htm

封面图片

麻省理工学院的衍生公司Ambri距离液态金属电池技术商业化越来越近

麻省理工学院的衍生公司Ambri距离液态金属电池技术商业化越来越近就在上个月,Ambri首次与公用事业供应商签订了协议。该公司将与XcelEnergy合作,在科罗拉多州奥罗拉的SolarTAC测试一个300千瓦时的系统,为期12个月。据悉,该系统将使用GridNXT微电网平台,整合风能和太阳能等多种发电资源,以及逆变器、负载组、三相配电连接和通信。Ambri表示,该系统将于2024年初安装。为期一年的研究将为Xcel提供充足的时间来评估系统的性能和能力。其液态金属电池系统采用了常见的商业级原材料,包括地壳中含量排名第五的钙元素。这使得其平台的生产成本远远低于传统的锂离子系统。该公司还声称,其长期能源存储解决方案可用于日常循环,即使在恶劣的环境中也不例外,而且寿命长达二十年。Ambri联合创始人唐纳德-萨多威说,他们拥有数千次充电循环的数据,这意味着可以运行数年。有了这些数据,Sadoway相信他的产品可以使用20年,并且仍能保持95%的容量。此外,据说该系统是相当安全的,因为它不会产生或释放任何气体,没有热失控的可能性,对过度充电或过度放电的耐受性也很高。该公司的系统也不需要像某些锂离子电池系统那样需要大量的冷却、防爆或灭火设备。...PC版:https://www.cnbeta.com.tw/articles/soft/1376091.htm手机版:https://m.cnbeta.com.tw/view/1376091.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人