天文学家在110亿光年之外探测到星系磁场

天文学家在110亿光年之外探测到星系磁场这张图片显示的是遥远的9io9星系的磁场方向,当时宇宙的年龄只有现在的20%--这是迄今为止探测到的最远的星系磁场。9io9星系中的尘粒在某种程度上与星系磁场的方向一致,因此它们会发出偏振光,这意味着光波会沿着一个偏好的方向而不是随机地摆动。ALMA探测到了这种偏振信号,天文学家可以据此推算出磁场的方向,这里显示的是叠加在ALMA图像上的弯曲线条。图片来源:ALMA(ESO/NAOJ/NRAO)/J.Geachetal.天文学家利用ALMA探测到了一个星系的磁场,这个星系非常遥远,它的光线需要110多亿年的时间才能到达我们这里。在此之前,我们从未在如此遥远的地方探测到一个星系的磁场。这段视频总结了这一发现。资料来源:欧洲南方天文台宇宙中的磁场宇宙中的许多天体都有磁场,无论是行星、恒星还是星系。英国赫特福德大学(UniversityofHertfordshire)天体物理学教授詹姆斯-盖奇(JamesGeach)说:"很多人可能不知道,我们的整个银河系和其他星系都布满了磁场,横跨数万光年。"他是最近发表在科学杂志《自然》(Nature)上的这项研究的第一作者。美国斯坦福大学研究员恩里克-洛佩兹-罗德里格斯(EnriqueLopezRodriguez)也参与了这项研究,他补充说:"尽管这些场对星系的演化非常重要,但我们实际上对它们是如何形成的知之甚少。目前还不清楚星系中的磁场在宇宙生命的早期是如何形成的,也不清楚形成的速度有多快,因为到目前为止,天文学家只绘制了离我们很近的星系的磁场图。"这幅红外图像显示的是遥远的9io9星系,在这里可以看到一个红色的弧线围绕着附近一个明亮的星系。附近的这个星系就像一个引力透镜:它的质量使周围的时空发生弯曲,使背景中来自9io9的光线发生弯曲,因此它的形状发生了扭曲。这张彩色图片是将欧洲南方天文台(ESO)位于智利的可见光和红外天文巡天望远镜(VISTA)和位于美国的加拿大-法国-夏威夷望远镜(CFHT)拍摄的红外图像结合在一起的结果。图片来源:ESO/J.Geachetal.恒星形成的作用和未来研究现在,利用欧洲南方天文台(ESO)的合作伙伴--ALMA,Geach和他的团队在一个遥远的星系中发现了一个完全形成的磁场,其结构与在附近星系中观测到的类似。这个磁场比地球磁场弱1000倍,但却延伸了16000多光年。盖奇解释说:"这一发现为我们提供了新的线索,让我们了解星系级磁场是如何形成的。在宇宙历史的这么早阶段就观测到一个发育完全的磁场,表明当年轻星系仍在成长时,横跨整个星系的磁场可以迅速形成。"研究小组认为,早期宇宙中恒星的密集形成可能对加速磁场的形成起到了一定的作用。此外,这些星场还会反过来影响后代恒星的形成方式。该发现的合著者、欧洲南方天文台天文学家罗布-艾维森(RobIvison)说,这一发现打开了"一扇了解星系内部运作的新窗口,因为磁场与正在形成新恒星的物质有关"。这段视频把我们从银河系的家带到了一个遥远的星系--9io9。我们首先看到的是可见光下的夜空,最后到达9io9星系时,我们切换到了红外光。在这里,银河系呈现出一条微弱的淡红色弧线,围绕着附近一个明亮的星系。然后我们看到的是毫米波长的9io9的ALMA图像,磁场的方向用叠加曲线表示。资料来源:ESO/ALMA(ESO/NAOJ/NRAO)/DESI/CFHT/N.Risinger(skysurvey.org)/J.Geachetal.探测遥远磁场的技术为了进行这项探测,研究小组搜索了遥远星系9io9中尘埃粒子发出的光线。星系中布满了尘埃粒子,当存在磁场时,尘埃粒子会趋于排列整齐,它们发出的光线也会变得偏振。这意味着光波会沿着一个偏好的方向振荡,而不是随机的。当ALMA探测到并绘制出来自9io9的偏振信号时,首次证实了在一个非常遥远的星系中存在磁场。盖奇说:"任何其他望远镜都无法做到这一点。希望通过这次和未来对遥远磁场的观测,这些基本的星系特征是如何形成的谜团将开始揭开。"...PC版:https://www.cnbeta.com.tw/articles/soft/1395473.htm手机版:https://m.cnbeta.com.tw/view/1395473.htm

相关推荐

封面图片

天文学家在银河系外首次发现环状星盘

天文学家在银河系外首次发现环状星盘天文学家在大麦哲伦星云中发现了围绕一颗正在形成的高质恒星的旋转盘,这是距离最遥远的一次观测。这一发现是利用ALMA天文台完成的,详细情况刊登在《自然》杂志上,它揭示了不同星系在恒星形成过程中的关键差异,突出显示了大麦哲伦云的尘埃和金属含量低于银河系。图片来源:ESO/L.卡尔卡达这个圆盘围绕着一颗年轻的大质量恒星,该恒星位于一个名为N180的恒星育婴室中,该育婴室位于邻近的一个名为大麦哲伦云的矮星系中。这个圆盘距离地球16.3万光年,是迄今为止直接探测到的围绕大质量恒星的最遥远圆盘。这幅艺术家印象图展示的是HH1177系统,它位于大麦哲伦星云中,是我们银河系的邻近星系。中心发光的年轻而巨大的恒星天体正在从尘土飞扬的圆盘中收集物质,同时以强大的喷流排出物质。图片来源:ESO/M.科恩梅瑟利用ALMA进行突破性观测研究人员利用欧洲南方天文台(ESO)的合作伙伴--位于智利的阿塔卡马大毫米波/亚毫米波阵列(ALMA),观测到大麦哲伦星云中一个年轻恒星天体周围的气体运动与开普勒吸积圆盘相一致--这种吸积圆盘通过注入物质促进恒星的生长。该研究小组由杜伦大学(DurhamUniversity)领导,包括英国天文技术中心(UKAstronomyTechnologyCentre)的天文学家,研究结果发表在《自然》(Nature)杂志上。当物质被拉向一颗正在成长的恒星时,它不能直接落在恒星上,而是会扁平地形成一个围绕恒星旋转的圆盘。在靠近恒星中心的地方,圆盘的旋转速度更快,这种速度上的差异就是向天文学家展示吸积盘存在的"烟枪"。利用欧洲南方天文台(ESO)的甚大望远镜(VLT)和阿塔卡马大毫米波/亚毫米波阵列(ALMA)(ESO是该阵列的合作伙伴)的综合能力,我们观测到了另一个星系中一颗年轻大质量恒星周围的圆盘。左图是VLT上的多单元光谱探测器(MUSE)的观测结果,显示了母云LHA120-N180B,在该云中首次观测到了这个被命名为HH1177的系统。中间的图像显示了伴随它的喷流。喷流的上半部分略微朝向我们,因此产生了蓝移;下半部分从我们身边退去,因此产生了红移。随后,ALMA的观测结果(右图)显示了恒星周围的旋转圆盘,同样地,圆盘的两侧也在向我们移动和远离我们。资料来源:ESO/ALMA(ESO/NAOJ/NRAO)/A.McLeodetal.这项研究的主要作者、来自杜伦大学河外天文中心的AnnaMcLeod博士说:"当我第一次在ALMA数据中看到旋转结构的证据时,我简直不敢相信我们探测到了第一个河外吸积盘;这是一个特殊的时刻。我们知道圆盘对于银河系中恒星和行星的形成至关重要,而在这里,我们第一次在另一个星系中看到了这方面的直接证据。我们正处在一个天文设施技术飞速发展的时代。能够在如此遥远的距离和不同的星系中研究恒星是如何形成的,实在令人兴奋。"这张马赛克照片的中心是年轻恒星系统HH1177的真实图像,它位于大麦哲伦云中,是银河系的邻近星系。该图像由欧洲南方天文台甚大望远镜(VLT)上的多单元光谱探测器(MUSE)获得,显示了从该恒星喷射出的喷流。随后,研究人员使用阿塔卡马大型毫米/亚毫米波阵列(ALMA)(ESO是该阵列的合作伙伴)找到了这颗年轻恒星周围有一个圆盘的证据。右图为该系统的艺术家印象图,展示了喷流和圆盘。资料来源:ESO/A.McLeodetal./M.Kornmesser发现的特征和影响与太阳这样的低质量恒星相比,大质量恒星的形成速度要快得多,寿命也短得多。在我们的银河系中,这些大质量恒星是出了名的难以观测,在它们周围形成一个星盘时,它们往往会被尘埃物质遮挡住。与银河系中类似的周星盘不同,这个系统在光学上是可见的,这可能是由于其周围环境中的尘埃和金属含量较低。这让天文学家得以窥探通常隐藏在气体和尘埃背后的吸积动态。对圆盘的分析表明,在距离中心恒星较大的距离上,内部开普勒区域正在向内陷物质过渡。据估计,这颗恒星的质量大约是太阳的15倍。虽然银河系圆盘具有许多我们熟悉的特征,但也出现了一些耐人寻味的差异。LMC典型的低金属含量似乎使这个圆盘在碎裂时更加稳定。对这个河外星系周星盘的成功探测,为利用ALMA和即将发射的下一代甚大阵列(ngVLA)发现更多此类系统提供了更广阔的前景。研究不同星系环境中恒星和星盘的形成,将有助于完成我们对恒星起源的理解。...PC版:https://www.cnbeta.com.tw/articles/soft/1400997.htm手机版:https://m.cnbeta.com.tw/view/1400997.htm

封面图片

天文学家探测到80亿年前产生的射电暴

天文学家探测到80亿年前产生的射电暴艺术家眼中的遥远快速射电暴穿越银河系空间来到地球上的景象ESO/M.Kornmesser这个信号被命名为FRB20220610A,属于快速射电暴(FRB)。顾名思义,这是一种持续时间只有几毫秒的尖锐无线电波爆发,似乎从天空的各个角落涌来。它们的确切来源仍不清楚,但最有可能的是一种被称为磁星的高度磁化的中子星。迄今为止探测到的大多数FRB都来自数亿光年或数十亿光年之外。最近的一次只有几万光年--在我们的银河系内。但是,2022年6月10日进行的新探测是迄今为止发现的最遥远的FRB。研究小组说,80亿光年的距离很可能已经接近现代技术能够精确定位的极限。这项研究的第一作者斯图尔特-莱德博士说:"利用ASKAP的天线阵列,我们能够精确地确定爆发来自哪里。然后,我们利用位于智利的欧洲南方天文台(ESO)甚大望远镜(VLT)搜索源星系,发现它比迄今发现的任何其他FRB源都要古老和遥远,而且很可能就在一小群合并星系之中。"快速射电暴到达探测到它的仪器的艺术印象卡尔-诺克斯(OzGrav/斯温伯恩大学)研究小组说,这项研究还表明,快速射电暴可以帮助天文学家解开另一个宇宙之谜:失踪的物质。我们最好的宇宙模型显示,宇宙应该包含一定量的物质,但当科学家们统计所有星系、恒星、行星、黑洞和其他一切时,似乎存在着巨大的缺口--我们缺少了大约40%的正常物质预算(相对于暗物质而言,暗物质是完全不同的东西)。最主要的假设是,所有这些物质都是以极度弥散的气体形式漂浮在星系间的空间。这种气体非常稀薄,几乎不可能被探测到,但这正是FRB的用武之地。天文学家可以研究这些无线电信号中不同波长的光的到达时间,从而推断出它们所经过的物质密度。旅程越长,包含的数据就越多,这使得新的无线电信号成为一个宝库。果然,新的观测结果似乎与弥漫星系间气体假说相吻合,提供了一些迄今为止最有力的证据。"虽然我们仍然不知道是什么导致了这些巨大的能量爆发,但这篇论文证实了快速射电暴是宇宙中常见的事件,我们将能够利用它们来探测星系间的物质,并更好地了解宇宙的结构,"该研究的共同第一作者RyanShannon副教授说。这项研究发表在《科学》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1391093.htm手机版:https://m.cnbeta.com.tw/view/1391093.htm

封面图片

天文学家借助韦伯太空望远镜探测到宇宙早期类星体的宿主星系

天文学家借助韦伯太空望远镜探测到宇宙早期类星体的宿主星系最近发表在《自然》(Nature)杂志上的一项研究表明,黑洞的质量接近太阳质量的十亿倍,而宿主星系的质量几乎是太阳质量的一百倍,这一比例与近代宇宙中发现的情况相似。斯巴鲁望远镜和JWST的强大组合为研究遥远的宇宙铺平了一条新的道路。遥远宇宙中存在如此巨大的黑洞,给天体物理学家带来了更多的问题,而不是答案。宇宙如此年轻,这些黑洞怎么可能长得如此巨大?更令人费解的是,对本地宇宙的观测表明,超大质量黑洞的质量与它们所在的更大的星系之间存在着明显的关系。星系和黑洞的大小完全不同,那么是黑洞先出现还是星系先出现呢?这是一个宇宙尺度上的"先有鸡还是先有蛋"的问题。JWSTNIRCam3.6μm拍摄的HSCJ2236+0032图像。放大图像、类星体图像以及减去类星体光线后的宿主星系图像(从左到右)。每幅图像中都标明了以光年为单位的图像比例。图片来源:Ding,Onoue,Silverman,etal.由卡夫利宇宙物理与数学研究所(KavliIPMU)项目研究员丁旭恒和约翰-西尔弗曼教授,以及北京大学卡夫利天文与天体物理研究所(PKU-KIAA)卡夫利天体物理学研究员小野上正夫萨领导的国际研究团队,已经开始利用2021年12月发射的詹姆斯-韦伯太空望远镜(JWST)来回答这个问题。研究宇宙早期宿主星系和黑洞之间的关系可以让科学家观察它们的形成过程,了解它们之间的关系。类星体很亮,而它们的宿主星系却很暗,这使得研究人员很难在类星体的强光下探测到星系的暗光,尤其是在很远的距离上。在JWST出现之前,哈勃太空望远镜能够探测到明亮类星体的宿主星系,当时宇宙的年龄还不到30亿年,但已经不再年轻了。美国国家航空航天局(NASA)的詹姆斯-韦伯太空望远镜将其主镜完全展开,形成在太空中时的构型。图片来源:NASA/ChrisGunnJWST在红外波段的超高灵敏度和超清晰图像终于让研究人员能够将这些研究推向类星体和星系最初形成的时间。就在JWST开始正常运行几个月后,研究小组观测到了两颗类星体,分别是HSCJ2236+0032和HSCJ2255+0251,红移分别为6.40和6.34,当时宇宙的年龄大约为8.6亿年。这两颗类星体是在夏威夷毛纳凯亚山顶的8.2米苏巴鲁望远镜的深度巡天计划中发现的。这两颗类星体的光度相对较低,是测量宿主星系特性的主要目标,宿主星系的成功探测代表了迄今为止在类星体中探测到星光的最早时间。卡弗利IPMU项目研究员丁旭恒、约翰-西尔弗曼(JohnSilverman)教授和卡弗利天文学和天体物理学研究所(PKU-KIAA)卡弗利天体物理学研究员MasafusaOnoue(左起)。图片来源:卡弗里国际天文物理研究所、卡弗里国际天文物理研究所、MasafusaOnoue这两颗类星体的图像是用JWST的NIRCam仪器以3.56和1.50微米的红外波长拍摄的,在仔细建模并减去来自吸积黑洞的眩光后,宿主星系变得清晰可见。在JWST的近红外光谱仪为J2236+0032拍摄的光谱中也可以看到宿主星系的恒星特征,这进一步支持了宿主星系的探测。对宿主星系光度的分析发现,这两个类星体宿主星系的质量很大,分别是太阳质量的1300亿倍和340亿倍。通过近红外光谱仪光谱对类星体附近湍流气体速度的测量表明,为类星体提供能量的黑洞质量也很大,分别是太阳质量的14亿倍和2亿倍。黑洞质量与宿主星系质量之比类似于近期星系的质量,这表明黑洞与其宿主星系之间的关系在宇宙大爆炸后8.6亿年就已经存在了。丁、西尔弗曼、奥努埃和他们的同事将利用计划中的第一周期JWST观测,用更大的样本继续这项研究,这将进一步制约黑洞及其宿主星系共同演化的模型。研究小组最近得知,他们已经获得了JWST在下一个周期的额外时间来研究黑洞及其宿主星系。...PC版:https://www.cnbeta.com.tw/articles/soft/1381743.htm手机版:https://m.cnbeta.com.tw/view/1381743.htm

封面图片

天文学家发现92亿光年外的神秘孤独星系

天文学家发现92亿光年外的神秘孤独星系与美国宇航局钱德拉X射线天文台和国际双子座天文台合作取得的这一结果可能会推动天文学家对星系在早期宇宙中增长速度的限制。在几个方面,3C297具有星系团的特质,一个包含数百甚至数千个单独星系的巨大结构。来自钱德拉的X射线数据显示,大量的气体被加热到数百万度--这是一个星系团的标志性特征。天文学家还发现了一个来自类星体的喷流--由卡尔-G-扬斯基甚大阵列看到--通过与周围环境的相互作用而弯曲。最后,钱德拉数据显示,有证据表明另一个类星体的喷流已经撞上了它周围的气体,形成了一个X射线的"热点"。这些都是星系团的典型特征。然而,双子座天文台的数据显示,3C297中只有一个星系。在双子座图像中出现的靠近3C297的19个星系,实际上是在很远的距离上。3C297星系被发现比预期的要孤独,这意味着它很可能已经拉进并吸收了它以前的同伴星系。3C297包含一个类星体,一个超大质量的黑洞在星系的中心拉扯气体,并驱动无线电波中看到的强大的物质喷流。来自钱德拉的X射线数据、来自卡尔-G-扬斯基甚大阵列的无线电数据和来自双子座的可见光数据表明,即使3C297的周围拥有星系团的许多特征,但除了一个星系之外,其他的都还在。在这个合成图中还有来自哈勃的可见光和红外数据。天文学家认为这最后一个大星系通过它的引力同化了其他的星系,并可能推动天文学家对星系在早期宇宙中成长速度的限制。在这个新的合成图像中,钱德拉的数据是紫色的,VLA的数据是红色的,双子座的数据是绿色的。来自哈勃太空望远镜的可见光和红外数据(分别为蓝色和橙色)也被包括在内。孤独的星系(3C297)和它的超大质量黑洞的位置在图像的标签版本中被识别出来,还有黑洞的喷流、X射线热点和热气。这张图片的视野太小,无法显示与3C297不在同一距离的19个星系中的任何一个。关于失踪的星系发生了什么的一个解释是,最大星系的引力,加上它们之间的相互作用,导致伴生星系坠落并被阿尔法星系同化。研究小组认为3C297最有可能是一个"化石群",而不是一个星系团,这是一个星系演化的阶段,一个星系正在拉拢并与其他星系合并。如果是这样的话,3C297代表了迄今为止发现的最遥远的化石群。作者不能排除3C297周围存在矮星系的可能性,但是它们的存在仍然不能解释缺乏像银河这样的大星系。附近的例子是室女星团中的M87,它在数十亿年前就有大型星系的陪伴。然而,3C297基本上将独自度过数十亿年。这项新研究发表在2023年1月的《天体物理学杂志》上。早期的钱德拉观测只持续了三个小时,显示了新研究中看到的热气体的暗示,正如合著者ChiaraStuardi在2018年4月的《天体物理学报》增刊系列中发表的一篇论文中所报道的那样。然而,需要更深入的钱德拉观测来证实它。对3C297的钱德拉观测是在2021年4月和2022年8月共2.5天的时间内进行的。...PC版:https://www.cnbeta.com.tw/articles/soft/1359363.htm手机版:https://m.cnbeta.com.tw/view/1359363.htm

封面图片

天文学家利用模拟技术阐明气体流体在多恒星系统诞生中的作用

天文学家利用模拟技术阐明气体流体在多恒星系统诞生中的作用IRAS04239+2436三重原恒星的艺术印象。利用观测和模拟进行的新研究揭示了多恒星系统的形成过程。资料来源:ALMA(ESO/NAOJ/NRAO)大多数质量与太阳相近的恒星都是与其他恒星一起在多恒星系统中形成的。因此,了解多恒星系统的形成对恒星形成的整体理论非常重要。然而,由于其复杂性和缺乏高分辨率、高灵敏度的数据,天文学家对其形成情况并不确定。特别是,最近对原恒星的观测经常报告有气体流向原恒星的"流线"结构,但一直不清楚这些流线是如何形成的。三元原恒星IRAS04239+2436周围的气体分布,(左)ALMA观测到的SO发射,(右)超级计算机ATERUI数值模拟再现。左图中的原恒星A和B显示为蓝色,表示来自原恒星周围尘埃的无线电波。在原恒星A中,被认为存在两颗未解决的原恒星。右图中,三个原恒星的位置用蓝色叉号表示。资料来源:ALMA(ESO/NAOJ/NRAO),J.-E.Leeetal.Leeetal.由首尔国立大学教授Jeong-EunLee领导的一个国际研究小组利用阿塔卡马大型毫米/亚毫米波阵列(ALMA)观测了位于460光年外金牛座的三元原恒星系统IRAS04239+2436。研究小组发现,一氧化硫(SO)分子的排放物追踪了围绕该系统中形成的三颗原恒星的三条旋臂。与法政大学教授松本智明(TomoakiMatsumoto)利用日本国立天文台计算天体物理学中心的超级计算机"ATERUI"和"ATERUIII"进行的模拟比较表明,这三条旋臂是向三颗原恒星输送物质的流线。观测与模拟的结合首次揭示了流线是如何产生并促进中心原恒星的生长的。超级计算机"ATERUI"对多恒星形成的模拟。影片显示,多颗原恒星诞生于丝状湍流气体云中,它们在运行过程中会激发旋臂并扰动周围的气体。资料来源:松本智明、武田孝昭、4D2U项目、NAOJ...PC版:https://www.cnbeta.com.tw/articles/soft/1399065.htm手机版:https://m.cnbeta.com.tw/view/1399065.htm

封面图片

天文学家可能已经发现了宇宙中最大的磁场

天文学家可能已经发现了宇宙中最大的磁场根据一项新的研究,科学家可能最终发现了我们所发现的最大磁场的证据。天文学家所指的这种宇宙网被认为是由星系之间的物质和丝线组成的。这些所谓的空隙实际上根本就不是空隙。相反,它们充满了星系间的物质,其中大部分是电离的。磁场在我们的宇宙中随处可见因为网是电离的,所以它也应该充满了磁场,形成一个大的、交织在一起的,不同于我们以前所见的任何东西。不过,正如在上面指出的,证明这种场的存在一直很棘手,因为我们无法直接探测到它。相反,我们必须通过它们对周围粒子的影响来观察这些场。因此,我们需要依靠对这些场所产生的无线电信号进行测绘。但是探测一个像网一样的大磁场也不容易。构成宇宙之网的丝状物是如此的分散,以至于它们发出的无线电信号不是很强。很多时候甚至被其他无线电噪音所淹没。为了解决这个问题,科学家们开始研究偏振的无线电光。通过聚焦于这些信号,他们能够看到特定方向的无线电信号。科学家们在最新的研究中所依赖的正是这些信号。其结果是首次探测到我们在宇宙中发现的最大磁场。...PC版:https://www.cnbeta.com.tw/articles/soft/1348167.htm手机版:https://m.cnbeta.com.tw/view/1348167.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人