Google人工智能击败超级计算机 实现快速准确的天气预报
Google人工智能击败超级计算机实现快速准确的天气预报著名的"蝴蝶效应"认为,一场风暴的发生与否,可能会受到世界上另一个地方的一只蝴蝶扇动翅膀这么小的事情的影响。天气预报的工作就是把这些众所周知的蝴蝶变成精确的模型,告诉你是否应该继续计划下周六的野餐。这就是所谓的"数值天气预报"(NWP),它使用全球当前的天气观测数据作为输入数据,并通过超级计算机上运行的复杂物理方程进行计算。但现在,Google发布了一款名为GraphCast的人工智能系统,它可以在功能更弱的硬件上以更快的速度计算数据。这种人工智能是根据卫星图像、雷达和气象站收集的40年天气再分析数据训练出来的。GraphCast提取六小时前的天气状况和当前的天气状况,然后利用其数据宝库预测六小时后的天气状况。在此基础上,它可以以6小时为增量向前推算,从而做出长达10天的天气预报。GraphCast在地球表面100多万个网格点上进行预测,每个网格点的经度和纬度均为0.25度。在每个网格点上,该模型都会考虑地表的温度、气压、湿度、风速和风向等五个变量,以及37个不同高度大气层中的六个变量。在测试中,在一台GoogleTPUv4机器上运行的GraphCast与目前天气预报的黄金标准--在超级计算机上运行的名为高分辨率预报(HRES)的模拟系统--进行了比较。GraphCast能够在一分钟内做出10天的预报,在90%的测试变量和预报准备时间上都比HRES更准确。当模型集中在对流层(大气层的最底层,准确的预测对日常生活最有用)时,GraphCast在99.7%的时间里都优于HRES。更令人印象深刻的是,GraphCast比HRES更早识别出恶劣天气事件,尽管它没有经过专门的训练。在一个真实的例子中,人工智能提前九天就准确预测出了飓风的登陆地点,而传统的预报只能提前六天确认。Google表示,GraphCast的代码是开源的,全世界的科学家都可以对其进行实验,并将其应用到日常的天气预报中。对于人工智能来说,这种数字运算是最理想的工作,因此它们可以把艺术和写作留给我们人类。这项研究发表在《科学》杂志上。了解更多:https://deepmind.google/discover/blog/graphcast-ai-model-for-faster-and-more-accurate-global-weather-forecasting/...PC版:https://www.cnbeta.com.tw/articles/soft/1397117.htm手机版:https://m.cnbeta.com.tw/view/1397117.htm
在Telegram中查看相关推荐
🔍 发送关键词来寻找群组、频道或视频。
启动SOSO机器人