科学家开发出高效收集低品位热量以获取能源的创新方法

科学家开发出高效收集低品位热量以获取能源的创新方法UNIST能源与化学工程学院Hyun-WookLee教授(左)和他的研究团队。图片来源:UNIST由研究人员团队开发的突破性TREC系统利用结构振动模式,有效地将低品位热量转化为能量。这一进步可能会改变可穿戴技术和二次电池的能量转换。由蔚山国立科学技术学院(UNIST)能源与化学工程学院的Hyun-WookLee教授和Dong-HwaSeo教授共同领导的研究小组,与南洋理工大学的SeokWooLee教授合作新加坡大学在利用低品位热源(<100°C)进行高效能源转换方面取得了重大突破。他们的开创性工作重点是开发高效的热再生电化学循环(TREC)系统,该系统能够将微小的温差转化为可用能量。图1.示意图显示电池和TREC系统的不同机制。虽然电池系统(左)会损失一些存储的能量作为无法使用的能量,但TREC系统(右)可以在电池循环过程中将低品位废热能转化为电化学能。图片来源:UNIST传统的能量收集系统在有效利用低品位热源方面面临挑战。然而,TREC系统提供了一种颇有吸引力的解决方案,因为它们将电池功能与热能收集功能集成在一起。在这项研究中,研究团队深入研究了结构振动模式在增强TREC系统功效方面的作用。通过分析共价键的变化如何影响振动模式(特别是影响结构水分子),研究人员发现,即使是微量的水也会在氰化物配体的A1g拉伸模式中引起强烈的结构振动。这些振动极大地导致了TREC系统内较大的温度系数(ɑ)。基于这些见解,该团队使用钠离子水电解质设计并实施了高效的TREC系统。图2.TREC原理和PBA结构中水分子的影响。(上)去除水分子对CuHCFe结构和共价变化(-ICOHP/eV)的影响。给出了Cu─N和Fe─C键的平均-ICOHP值以及6个Fe─C键的-ICOHP值的SD。(中)水分子对氰化物配体伸缩振动模式的影响。(下)d)TREC全电池和半电池所收获的功量。低温和高温分别为10和60°C。基于O/Cu-x,全电池的电流密度设置为0.5C(30mAg−1)。图片来源:UNIST“这项研究为结构振动模式如何增强TREC系统的能量收集能力提供了宝贵的见解,”Hyun-WookLee教授解释道。“我们的研究结果加深了我们对普鲁士蓝类似物受这些振动模式调节的内在特性的理解,为改善能量转换开辟了新的可能性。”TREC系统的潜在应用非常广泛,特别是在可穿戴技术和其他存在小温差的设备中。通过有效捕获低品位热量并将其转化为可用能源,TREC系统为开发下一代二次电池提供了一条有前途的途径。...PC版:https://www.cnbeta.com.tw/articles/soft/1400515.htm手机版:https://m.cnbeta.com.tw/view/1400515.htm

相关推荐

封面图片

科学家开发出生产绿色氢气的更高效新方法

科学家开发出生产绿色氢气的更高效新方法这项新研究最近发表在《焦耳》(Joule)杂志上,重点关注氢气或合成气的生产,合成气是氢气和一氧化碳的混合物,可转化为汽油、柴油和煤油等燃料。科罗拉多大学博尔德分校的研究小组为第一种完全利用太阳能生产这种燃料的商业化可行方法奠定了基础。这可能有助于工程师以更可持续的方式生产合成气。该小组由化学与生物工程系教授AlWeimer领导。这项新研究的两位主要作者之一、化学与生物工程系副研究员肯特-沃伦(KentWarren)说:"我的想法是,有朝一日,当你去加油站加油时,我们会有无铅汽油、超级无铅汽油和乙醇汽油等多种选择,然后还有一种太阳能燃料可供选择,这种燃料来自阳光、水和二氧化碳。我们希望它在成本上能够与从地下获取的燃料相媲美。"传统上,工程师们通过电解法生产氢气,即利用电能将水分子分裂成氢气和氧气。而该团队的"热化学"方法则是利用太阳光产生的热量来完成同样的化学反应。这种方法还能将从大气中提取的二氧化碳分子分裂成一氧化碳。科学家们之前已经证明,这种制造氢气和一氧化碳的方法是可行的,但其效率可能不足以以商业上可行的方式生产合成气。在新的研究中,研究人员证明,他们可以在较高的压力下进行这些反应,部分原因是采用了铁铝酸盐材料,这种材料相对便宜,在地球上也很丰富。这些较高的压力使研究小组的氢气产量增加了一倍多。...PC版:https://www.cnbeta.com.tw/articles/soft/1382709.htm手机版:https://m.cnbeta.com.tw/view/1382709.htm

封面图片

科学家开发出更高效的从空气中捕捉淡水的新方法 灵感来自早餐麦片圈

科学家开发出更高效的从空气中捕捉淡水的新方法灵感来自早餐麦片圈Cheerios效应是一个小漂浮物在液体表面聚集的过程。研究人员对这一过程进行了优化,以提高高效集水系统的凝结率。资料来源:2024KAUST;IvanGromicho领导这项研究的丹-丹尼尔实验室研究员马库斯-林说:"我们对设计能促进水凝结的表面很感兴趣,水凝结具有重要的传热和集水应用价值。在典型的固体表面上,凝结的水滴粘附在表面上,运动量极小。想想水在冰冷的苏打水罐上凝结的情形。"只有当液滴长到足够大时,重力才会把它们往下拉,这时液滴才会移动。"丹尼尔、林和他们的合作者的想法是,添加一层薄薄的油膜可以润滑表面,使液滴高度移动,从而为进一步的液滴凝结腾出空间,提高凝结率,这个想法奏效了,但液滴移动的复杂方式却完全出乎意料。一旦液滴增长到临界大小,它们就开始以一种类似于精心编排的舞蹈的独特模式在油中移动。林说:"它们最初以蛇形方式运动,然后过渡到圆周运动,然后再返回。"这些运动的尺度从微米到几厘米不等,持续时间长达数小时。"研究人员捕捉到水滴在油性薄膜上凝结时表现出复杂的集体运动,在蛇形运动和圆形运动之间摆动。资料来源:2024KAUST;FauziaWardani这一过程的驱动力是,就像牛奶中的麦片一样,漂浮在油中的水滴会被吸引向它们的邻居。较大的水滴在运动过程中会吞噬路径上较小的水滴,从而释放出能量。当局部油膜耗尽时,移动的液滴会重新分配油膜,并从蛇形运动转为圆周运动。一旦局部油膜恢复,蛇形运动又会重新开始。丹尼尔说,随着淡水资源面临的压力越来越大,人们开始广泛寻求这种无需能量输入、通过简单冷凝就能从空气中高效捕获水的装置。他说:"通过优化冷凝液滴的集体运动,我们可以大大提高冷凝率,从而设计出更高效的集水系统。"研究小组计划进一步探索液滴运动的驱动机制,特别是研究从蛇形运动到圆形运动的过渡。"另一个关键方面是探索潜在的应用,特别是在传热增强和水收集方面。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1429734.htm手机版:https://m.cnbeta.com.tw/view/1429734.htm

封面图片

科学家找到让红外线在室温下可见的新方法

科学家找到让红外线在室温下可见的新方法研究人员开发出一种名为MIRVAL的方法,可在室温下将中红外光子转换为可见光子,从而实现单分子光谱学,并在气体传感、医疗诊断、天文学和量子通信领域得到广泛应用。在使用量子系统的新方法中,研究小组利用分子发射器将低能量的近红外光子转换为高能量的可见光光子。这项新的创新有能力帮助科学家在室温下检测中红外,并在单分子水平上进行光谱分析。伯明翰大学助理教授、该研究的第一作者RohitChikkaraddy博士解释说:"分子中保持原子间距的键会像弹簧一样振动,这些振动会产生非常高的共振频率。这些弹簧可以被人眼不可见的中红外光激发。在室温下,这些弹簧是随机运动的,这意味着探测中红外光的一大挑战就是要避免这种热噪声。现代探测器依赖于冷却半导体器件,这些器件耗能高、体积大,但我们的研究提出了一种在室温下探测这种光的令人兴奋的新方法"。这种新方法被称为中红外振动辅助发光(MIRVAL),使用的分子具有中红外光和可见光两种功能。研究小组能够将分子发射器组装成一个非常小的等离子腔体,该腔体在中红外和可见光范围内都能产生共振。他们进一步设计了这种腔体,使分子振动态和电子态能够相互作用,从而将中红外光有效地转化为增强的可见光。Chikkaraddy博士继续说道:"最具挑战性的方面是将三种截然不同的长度尺度--数百纳米的可见光波长、小于一纳米的分子振动和上万纳米的中红外波长--整合到一个平台中,并将它们有效地结合在一起。"研究人员通过创建皮腔--由金属面上的单原子缺陷形成的捕获光的难以置信的小空腔--能够实现低于一立方纳米的极端光约束体积。这意味着研究小组可以将中红外光限制在单个分子的范围内。这一突破能够加深人们对复杂系统的理解,并打开通往红外活性分子振动的大门,而在单分子水平上通常是无法实现的。但事实证明,除了纯粹的科学研究之外,MIRVAL还能在许多领域发挥作用。Chikkaraddy博士总结道:"MIRVAL可以有多种用途,如实时气体传感、医疗诊断、天文观测和量子通信,因为我们现在可以看到单个分子在MIR频率下的振动指纹。能够在室温下探测近红外,意味着探索这些应用和在这一领域开展进一步研究变得更加容易。通过进一步改进,这种新方法不仅可以应用于塑造未来近红外技术的实用设备中,而且还能释放出连贯操纵分子量子系统中'带弹簧的球'原子错综复杂的相互作用的能力"。...PC版:https://www.cnbeta.com.tw/articles/soft/1380635.htm手机版:https://m.cnbeta.com.tw/view/1380635.htm

封面图片

科学家开发出制造新一代太阳能电池的新方法

科学家开发出制造新一代太阳能电池的新方法包括宾夕法尼亚州立大学教师NelsonDzade在内的一个国际研究小组报告了一种新方法,这种方法可以制造出更耐用的太阳能电池,同时还能高效地将太阳光转化为电能。资料来源:NelsonDzade包括宾夕法尼亚州立大学教师NelsonDzade在内的科学家们在《自然-能源》杂志上报告了他们的新方法,该方法可制造出更耐用的过氧化物太阳能电池,并仍能实现21.59%的高效率将太阳光转化为电能。约翰和威利-莱昂家族能源与矿产工程系能源与矿产工程助理教授、本研究的合著者德扎德说,透辉石是一种很有前途的太阳能技术,因为与传统的硅材料相比,这种电池可以在室温下用更少的能量制造,使其生产成本更低,更具可持续性。科学家们说,但用于制造这些设备的主要候选材料--有机-无机混合金属卤化物,含有易受潮、氧和热影响的有机成分,暴露在真实世界的条件下会导致性能迅速下降。一种解决方案是转而使用碘化铯铅等全无机包晶材料,这种材料具有良好的电气性能和对环境因素的超强耐受性。不过,这种材料是多晶体的,也就是说,它有多个具有不同晶体结构的相。科学家们说,其中两种光活性相对于太阳能电池来说是好的,但它们在室温下很容易转化为不良的非光活性相,从而引入缺陷,降低太阳能电池的效率。突破性的相异质结技术科学家们将碘化铯铅的两种光活性多晶体结合起来,形成了一种相异质结--它可以抑制向不良相的转变。异质结是通过堆叠具有不同光电特性的不同半导体材料形成的,就像太阳能电池中的层一样。太阳能设备中的这些结可以进行定制,以帮助从太阳中吸收更多能量,并更高效地将其转化为电能。Dzade说:"这项工作的美妙之处在于,它表明利用同一种材料的两种多晶体来制造相异质结太阳能电池是一种可行的方法。它提高了材料的稳定性,防止了两相之间的相互转换。两相之间形成的相干界面可使电子轻松流过设备,从而提高功率转换效率。这就是我们在这项工作中所展示的。"研究人员制造出的器件实现了21.59%的功率转换效率,属于此类方法中的最高水平,而且稳定性极佳。不仅如此,该装置在环境条件下储存200小时后,仍能保持90%以上的初始效率。Dzade说:"当从实验室扩展到实际太阳能模块时,我们的设计在太阳能电池面积超过7平方英寸(18.08平方厘米)的情况下,功率转换效率达到了18.43%。这些初步结果凸显了我们的方法在开发超大型过氧化物太阳能电池模块和可靠评估其稳定性方面的潜力。"研究人员对在原子尺度上对异质结的结构和电子特性进行了建模,并发现将两种光活性相结合在一起可以形成稳定而连贯的界面结构,从而促进高效的电荷分离和转移--这是实现高效太阳能设备的理想特性。Dzade在韩国全南大学的同事开发出了制造该设备的独特双沉积方法--一种相用热风技术沉积,另一种相用三源热蒸发技术沉积。韩国全南大学研究教授、论文第一作者SawantaS.Mali说,在沉积过程中添加少量分子和有机添加剂,进一步提高了器件的电性能、效率和稳定性。约翰和威利-莱昂家族能源与矿物工程系能源与矿物工程助理教授、该研究的共同作者尼尔森-德扎德(NelsonDzade)说:"我们相信,我们在这项工作中开发的双沉积技术将对制造高效、稳定的过氧化物太阳能电池产生重要影响。"研究人员说,这种双重沉积技术可以为开发更多基于全无机包晶或其他卤化物包晶成分的太阳能电池铺平道路。研究人员说,除了将该技术扩展到不同的成分外,未来的工作还包括使目前的相位异质结电池在实际条件下更加耐用,并将其扩展到传统太阳能电池板的尺寸。Dzade说:"有了这种方法,我们相信在不久的将来,这种材料的效率应该可以超过25%。一旦我们做到了这一点,商业化就指日可待了。...PC版:https://www.cnbeta.com.tw/articles/soft/1392487.htm手机版:https://m.cnbeta.com.tw/view/1392487.htm

封面图片

量子突破:科学家开发出操纵奇异材料的新方法

量子突破:科学家开发出操纵奇异材料的新方法上图展示了一种控制材料中量子态的新方法。电场诱导铁电基底发生极化转换,从而产生不同的磁性和拓扑状态。图片来源:MinaYoon、FernandoReboredo、JacquelynDeMink/ORNL、美国能源部拓扑材料发现于20世纪80年代,是一种新的材料阶段,其发现者于2016年获得诺贝尔奖。仅利用电场,ORNL的研究人员就能将普通绝缘体转化为磁性拓扑绝缘体。这种奇特的材料允许电流流过其表面和边缘,而没有能量耗散。电场会引起物质状态的改变。领导这项研究的ORNL的MinaYoon说:"这项研究可以带来许多实际应用,如下一代电子学、自旋电子学和量子计算。"这些物质可能会带来高速、低功耗的电子产品,与目前的硅基电子产品相比,它们能耗更低、运行更快。ORNL的科学家们在《二维材料》(2DMaterials)上发表了他们的研究成果。...PC版:https://www.cnbeta.com.tw/articles/soft/1383317.htm手机版:https://m.cnbeta.com.tw/view/1383317.htm

封面图片

科学家提出搜寻暗物质的新方法

科学家提出搜寻暗物质的新方法自暗物质被发现以来,科学家们一直未能探测到它,即使几十年来在世界各地部署了多个超灵敏粒子探测器实验也无济于事。现在,美国能源部(DOE)SLAC国家加速器实验室的物理学家们提出了一种利用量子设备寻找暗物质的新方法。SLAC物理学家丽贝卡-利恩(RebeccaLeane)是这项新研究的作者之一,她认为大多数暗物质实验都在寻找银河系暗物质,这种暗物质会直接从太空发射到地球上,但另一种暗物质可能已经在地球周围徘徊了很多年。利恩说:"暗物质进入地球后,会四处弹跳,最终被地球的引力场困住。随着时间的推移,这种热化暗物质的密度会比少数松散的星系粒子更高,这意味着它更有可能撞上探测器。不幸的是,热化暗物质的移动速度要比银河系暗物质慢得多,这意味着它传递的能量要比银河系暗物质少得多--传统探测器可能无法看到。"有鉴于此,利恩和SLAC博士后研究员阿尼尔班-达斯找到了SLAC的科学家诺亚-库林斯基,他是一个新实验室的负责人,主要研究用量子传感器探测暗物质。库林斯基说,科学家通常认为这是因为冷却系统不完善或环境中存在热源。但他说,可能还有其他原因:"如果我们实际上有一个完美的冷系统,而我们无法有效冷却它的原因是它不断受到暗物质的轰击呢?"达斯、库林斯基和利恩想知道,超导量子设备是否可以重新设计为热化暗物质探测器。根据他们的计算,激活量子传感器所需的最小能量足够低,约为千分之一电子伏特,因此它可以探测到低能量的银河系暗物质以及悬浮在地球周围的热化暗物质粒子。当然,这并不意味着暗物质是量子设备失灵的罪魁祸首--只是说它是可能的,下一步就是要弄清楚他们能否以及如何将敏感的量子设备变成暗物质探测器。因此,有几件事需要考虑。首先,也许有更好的材料来制造这种装置。利恩说:"我们一开始考虑的是铝,这只是因为铝可能是迄今为止用于探测器的特性最好的材料。但事实可能证明,对于我们正在研究的质量范围和我们想要使用的探测器类型,也许有更好的材料。"利恩说,还有一种可能性是,热化暗物质与量子设备的相互作用不会像银河系暗物质被怀疑与直接探测设备的相互作用那样。在这项研究中只是考虑了暗物质进入并直接弹开探测器的简单情况,但它还可以做很多其他事情。例如,其他粒子可能与暗物质相互作用,改变探测器中粒子的分布方式。"这就是在SLAC工作的好处之一。我们确实有相当多样化的小组在从事许多不同的科学研究,我觉得这个项目是SLAC研究的一个非常好的协同效应。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1429970.htm手机版:https://m.cnbeta.com.tw/view/1429970.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人