研究人员利用钻石缺陷实现数据存储突破

研究人员利用钻石缺陷实现数据存储突破纽约城市学院的物理学家们正在把钻石变成现代数据存储的宝库。发表在《自然-纳米技术》(NatureNanotechnology)上的一项研究重点介绍了理查德-G-蒙日(RichardG.Monge)和汤姆-德洛德(TomDelord)领导的研究。秘密在于钻石中所谓的"色彩中心"。它们是原子缺失的微小瑕疵,形成的斑点可以吸收光线。"这意味着我们可以在钻石的同一个地方存储许多不同的图像,方法是使用颜色略有不同的激光,将不同的信息存储到相同微观斑点中的不同原子中,"CCNY的博士后助理研究员汤姆-德洛德(TomDelord)解释说。通常情况下,光学数据存储会遇到一个叫做衍射极限的障碍--这是一种物理障碍,会阻止数据过于紧密地写入。CCNY的方法巧妙地避开了这个问题。通过调整所使用光的颜色(或波长),他们可以将不同颜色的中心靠近,从而在极小的空间内存储更多的数据。这不仅仅是一种一劳永逸的技术。写入这些钻石缺陷的数据可以反复擦除和重写。德洛德称,这项新技术使他们的团队能够在分子水平上写入和读取"精确到单个原子"的微小数据位。该团队实现了每平方英寸25GB的数据密度--想象一下在比邮票还小的空间里存储整张蓝光光盘的内容吧。加州大学洛杉矶分校团队与钻石的合作是探索用于数据存储的非传统材料的大趋势的一部分。例如,微软的"硅项目"(ProjectSilica)正在尝试将石英玻璃用于云存储解决方案。利用玻璃的耐久性来存储数据,有助于将大量数字数据保存几个世纪。这将产生巨大的影响,虽然使用钻石似乎是一件昂贵的事情,但实验室培育的钻石有可能使这项技术在商业上被接受。如果这种方法能应用于其他材料或室温条件下,它将彻底改变计算和数字存储的游戏规则。想象一下,一颗钻石不仅能在你的手指上闪闪发光,还能容纳一个藏书、照片等内容的图书馆。同样,数据存储领域的另一项突破是陶瓷纳米存储器的开发。这项技术有望颠覆价值5000亿美元的存储产业,利用先进材料以更紧凑、更耐用、更节能的方式存储数据。...PC版:https://www.cnbeta.com.tw/articles/soft/1403055.htm手机版:https://m.cnbeta.com.tw/view/1403055.htm

相关推荐

封面图片

钻石数据存储技术突破性地将写入和改写精确到单原子级别

钻石数据存储技术突破性地将写入和改写精确到单原子级别有趣的是,它的工作原理不是将数据写入钻石本身,而是写入材料中微小的氮缺陷。这些缺陷可以吸收光线,因此被称为"色彩中心"。通常,光学存储技术在写入数据的精细程度上有一个硬性限制--毕竟,激光束能聚焦到的最小直径是有限制的。这个直径被称为衍射极限,与所使用的光波长成比例。这项研究的合著者汤姆-德洛德(TomDelord)说:"不能用这样的光束来写入分辨率小于衍射极限的数据,因为如果将光束的位移小于衍射极限,就会影响已经写入的数据。因此,通常情况下,光学存储器通过缩短波长(转向蓝色)来增加存储容量,这就是我们拥有'蓝光'技术的原因。"但在这项新研究中,纽约市立大学(CUNY)的研究人员找到了绕过衍射限制的方法。诀窍在于使用不同波长的光将数据写入距离比衍射极限更近的颜色中心--例如,可能无法将两个"绿色"并排放在一起,但如果交替使用绿、红、蓝三种颜色,理论上你可以在一个区域内存储比使用单一颜色多三倍的数据。德洛德说:"我们所做的就是利用窄带激光和低温条件,非常精确地控制这些颜色中心的电荷。这种新方法使我们能够在比以前更精细的水平上写入和读取微小的数据位,甚至精确到单个原子。"在测试中,研究小组证明,该技术可以在同一位置以不同频率刻印12幅不同的图像,数据密度达到每平方英寸(6.4平方厘米)25GB。相比之下,标准的单层蓝光光盘整个表面的容量也就这么多。作为额外的奖励,这项技术是可逆的,因此数据基本上可以根据需要多次写入、擦除和重写。研究小组表示,通过进一步的工作,这项技术可以应用于其他材料,并有望在室温而非低温条件下实现。这项研究发表在《自然-纳米技术》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1402357.htm手机版:https://m.cnbeta.com.tw/view/1402357.htm

封面图片

研究人员提出了基于原子尺度缺陷的永久数据存储新途径

研究人员提出了基于原子尺度缺陷的永久数据存储新途径通过聚焦离子束将信息写入光学活性原子缺陷(左图),并利用阴极发光或光致发光(右图)读取信息。资料来源:M.Hollenbach,H.Schultheiß研究小组在《先进功能材料》(AdvancedFunctionalMaterials)杂志上报告说,这些缺陷是由聚焦离子束产生的,具有空间分辨率高、写入速度快、存储单个比特能量低等特点。据最新估计,每天产生的新数据约为3.3亿TB,仅在过去两年中就产生了全球90%的数据。如果说单纯的数字已经表明需要先进的数据存储技术,那么这绝不是与这一发展相关的唯一问题。当前存储介质的存储时间有限,需要在几年内进行数据迁移,以避免数据丢失。HZDR离子束物理与材料研究所的GeorgyAstakhov博士说:"除了陷入永久数据迁移程序之外,这还大大增加了能源消耗,因为在此过程中会消耗大量能源。"为了缓解这一迫在眉睫的危机,Astakhov的团队现在引入了一种基于碳化硅原子级缺陷的长期数据存储新概念。这些缺陷由聚焦的质子或氦离子束造成,并利用与缺陷相关的发光机制进行读取。传统存储设备如何受物理学制约目前,磁性存储器是追求大容量的数据存储解决方案的首选,但物理定律为可实现的存储密度设定了限制。要提高存储密度,就必须缩小磁性颗粒的尺寸。但这样一来,材料中的热波动和扩散过程就变得越来越重要,对存储时间的影响也越来越大。调整材料的磁性可能会抑制这种影响,但这是有代价的:存储信息的能量更高。同样,光学设备的性能也受到物理定律的制约。由于所谓的衍射极限,最小记录位的大小受到限制:它不能小于光波长的一半,这就设定了最大存储容量的极限。出路在于多维光学记录。碳化硅具有原子尺度的缺陷,尤其是晶格部位没有硅原子。这些缺陷是由聚焦的质子或氦离子束产生的,具有空间分辨率高、写入速度快、存储单个比特的能量低等特点。光学介质固有的存储密度衍射限制同样适用于这种的情况。研究人员通过4D编码方案克服了这一限制。在这里,通过控制横向位置和深度以及缺陷数量,实现了三个空间维度和额外的第四个强度维度。然后,他们通过光激发引发的光致发光来读出存储的数据。此外,通过聚焦电子束激发可观察到阴极发光,从而大大提高了存储密度。世代存储数据怎样实现根据介质保存的环境条件,存储的信息可能会再次从缺陷中消失,但考虑到他们的材料,科学家们等到了一个好消息。Astakhov说:"这些缺陷的失活与温度有关,这表明在环境条件下,这些缺陷的保留时间最短可达几代。还有更多。利用近红外激光激发、现代编码技术和多层数据存储(即在多达十层碳化硅层上相互堆叠),研究小组达到了与蓝光光盘相当的面积存储密度。在数据读出时,改用电子束激发而不是光学激发,这种方式所能达到的极限相当于目前报道的原型磁带的记录面积存储密度,但存储时间更短,能耗更高。"编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1426469.htm手机版:https://m.cnbeta.com.tw/view/1426469.htm

封面图片

研究人员利用多级磁记录技术实现磁区密度超过10Tbit/in²的超高密存储

研究人员利用多级磁记录技术实现磁区密度超过10Tbit/in²的超高密存储数据中心越来越多地将大量数据存储在硬盘驱动器(HDD)上,这些驱动器使用垂直磁记录(PMR)技术,以大约1.5Tbit/in²的磁区密度存储信息。然而,要过渡到更高的磁区密度,需要一种由铂铁晶粒组成的高各向异性磁记录介质,并结合热辅助激光写入技术。这种方法被称为热辅助磁记录(HAMR),能够维持高达10Tbit/in²的磁区记录密度。此外,与硬盘技术中使用的二进制记录层相比,通过存储3或4层的多记录层,根据新的原理,记录密度有可能超过10Tbit/in²。目前使用的HAMR系统(上)和三维磁记录系统(下)示意图。在三维磁记录系统中,每个记录层的居里温度相差约100K,通过调整激光功率将数据写入每个记录层。资料来源:高桥幸子NIMS、ThomasChang希捷科技、SimonGreaves东北大学在这项研究中,研究人员通过制造晶格匹配的FePt/Ru/FePt多层薄膜,并以Ru作为间隔层,成功地将铁铂记录层进行了三维排列。磁化测量结果表明,两个铁铂层具有不同的居里温度。这意味着,通过调整写入时的激光功率,可以实现三维记录。此外,我们还通过记录模拟,使用模仿制作介质的微观结构和磁性能的介质模型,证明了三维记录的原理。三维磁记录方法可以通过在三个维度上堆叠记录层来提高记录容量。这意味着可以用更少的硬盘存储更多的数字信息,从而为数据中心节约能源。今后团队还有计划开发缩小铁铂晶粒尺寸、改善取向和磁各向异性的工艺,并堆叠更多的铁铂层,以实现适合作为高密度硬盘实际使用的介质结构。这项研究发表于2024年3月24日的《材料学报》(ActaMaterialia)。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1427310.htm手机版:https://m.cnbeta.com.tw/view/1427310.htm

封面图片

韩国研究人员实现在常压下生长钻石 耗时仅15分钟

韩国研究人员实现在常压下生长钻石耗时仅15分钟在地球上,唯一具备适当自然条件的地方是地幔深处,在地下数百英里处。只有在火山爆发时,它们才会被带到更接近地表的地方,因此它们非常罕见。再加上历史上一些巧妙的营销手段,这块小石头就变得非常抢手了。几十年来,科学家们一直在实验室中培育人工钻石,但通常仍需要极端条件--近50000个大气压的压力和约1500°C(2,732°F)的温度。但现在,一种新技术已经在正常压力水平和较低温度下培育出了钻石。这种新方法由韩国基础科学研究所(IBS)和蔚山国立科学技术研究院(UNIST)的一个团队开发,利用一种由镓、铁、镍和硅组成的液态金属合金合成钻石。在一个9升(2.4加仑)的容器中,将这种金属混合物置于温度为1025°C(1877°F)的甲烷和氢气中。15分钟后,气体从系统中排出,底部会形成一层金刚石薄膜。这层膜可以很容易地剥离出来,用于研究或直接投入工作。通常情况下,合成金刚石技术需要"种子颗粒"让第一批碳原子吸附在周围形成金刚石。但在这种情况下,液态金属中的微量硅似乎有助于碳原子形成簇。最终得到的是非常纯净的钻石。其他金属可以替换使用,但硅似乎对这一过程至关重要。研究人员现在计划研究其他液态金属合金和气体,甚至是固态碳,看看它们能不能制造出钻石。虽然我们不可能很快戴上在液态金属大桶中培育的钻石,但它们可以首先在工业应用中找到用武之地。这项研究发表在《自然》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1432200.htm手机版:https://m.cnbeta.com.tw/view/1432200.htm

封面图片

微软AI研究人员意外暴露大量内部数据 因云存储链接配置错误

微软AI研究人员意外暴露大量内部数据因云存储链接配置错误云安全公司Wiz的一个团队发现,这些托管在云平台上的数据是通过一个配置错误的链接暴露的。据Wiz称,微软人工智能研究团队在GitHub上发布开源训练内容时无意间泄露了这些数据。据悉,相关存储库的用户得到通知,可以从云存储的相关URL链接下载人工智能模型。但根据Wiz的一篇博客文章,这一链接被错误配置,有整个存储帐户的权限,并且还授予用户对整个存储库的完全控制权限,而不仅仅是只读权限,这意味着用户可以随意删除和覆盖现有文件。据Wiz称,存储库中泄露的数据包括微软员工的个人电脑备份信息,其中包含微软服务密码、密钥和来自359名微软员工的3万多条微软Teams内部消息。Wiz的研究人员表示,开放数据共享是人工智能训练工作的关键组成部分。但如果使用不当,共享大量数据会使公司面临更大风险。Wiz首席技术官兼联合创始人阿米卢特瓦克(AmiLuttwak)说,Wiz在今年6月份与微软分享了这一消息,微软迅速采取行动删除了暴露数据。他补充说,这起事件“本来可能会更糟”。在被问及对此次数据暴露事件的评论时,微软一位发言人表示:“我们已经确认,没有客户数据被泄露,也没有其他内部服务受到影响。”在周一发布的一篇博客文章中,微软表示这起事件涉及一名微软员工将GitHub公共存储库中的URL共享给开源人工智能学习模型,公司已经进行调查,并实施了补救措施。微软表示,存储账户中暴露的数据包括两名前员工电脑配置文件的备份内容,以及这两名员工与同事之间的微软团队Teams内部消息。根据博客称,这次数据暴露是Wiz研究团队在扫描互联网上配置错误存储器时发现的,这是他们针对意外暴露云托管数据所开展工作的组成部分。...PC版:https://www.cnbeta.com.tw/articles/soft/1384855.htm手机版:https://m.cnbeta.com.tw/view/1384855.htm

封面图片

海量数据如何存储?中国科学家实现光存储Pb量级首次突破

海量数据如何存储?中国科学家实现光存储Pb量级首次突破近日,中国科学院上海光学精密机械研究所(下称“上海光机所”)与上海理工大学等科研单位合作,在超大容量超分辨三维光存储研究中取得突破性进展。这对我国在信息存储领域突破关键核心技术、实现数字经济的可持续发展具有重大意义。相关研究成果于2月22日发表在《自然》(Nature)杂志。这是国际上首次实现Pb量级的超大容量光存储。仅仅20克透明轻薄的光盘,来源:《自然》小空间存更多数据所谓存力,是以数据存储为核心,包含性能表现、安全可靠、绿色低碳在内的综合数据存储服务能力,是激活数据要素的核心动能。本次成果中,研究团队利用国际首创的双光束调控聚集诱导发光超分辨光存储技术,实验上首次在信息写入和读出均突破了衍射极限的限制,实现了点尺寸为54nm、道间距为70nm的超分辨数据存储,并完成了100层的多层记录,单盘等效容量达Pb量级,对于我国在信息存储领域突破关键核心技术、实现数字经济的可持续发展具有重大意义。该论文第一作者单位为上海光机所,通讯作者为上海光机所阮昊研究员和上海理工大学光子芯片研究院院长顾敏院士,上海理工大学文静教授。上海光机所博士后赵苗和上海理工大学文静教授为并列第一作者。项目得到了上海市科委和国家重点研发计划等支持。阮昊对第一财经解释道,光存储技术具有绿色节能、安全可靠、寿命长达50~100年的独特优势,非常适合长期低成本存储海量数据,然而受到衍射极限的限制,传统商用光盘的最大容量仅在百GB量级。在信息量日益增长的大数据时代,突破衍射极限、缩小信息点尺寸、提高单盘存储容量长久以来一直都是光存储领域的追求。1994年德国科学家StefanW.Hell教授提出受激辐射损耗显微技术,首次证明了光学衍射极限能够被打破,并在2014年获得诺贝尔化学奖,经过20多年的发展,在显微成像、激光纳米直写等多个领域实现了光学超分辨成果,信息的超分辨写入已经得到了解决。从光学显微技术到光存储技术,都被光学衍射极限所限制。在2021年Science发布的全世界最前沿的125个科学问题中,突破衍射极限限制更是在物理领域高居首位。该超分辨光盘的成功研制在信息写入和读出都突破了这一物理学难题,有助于我国在存储领域突破关键核心技术,将在大数据数字经济中发挥重大作用,以满足信息产业领域的重大需求。“所以这一次我们解决了光存储领域信息写入和读出均受衍射极限限制的问题,实现了超分辨的记录,极大地提高了光存储的密度和容量。因为单盘的容量是1.6个Pb,相当于1万张蓝光光盘,这是一个突破性的进展,为大数据存储提供了绿色节能长寿命的方案。”研究人员告诉记者,他们也和目前的硬盘、光盘技术进行了一些对比,在技术性能上提高了最高的光存储面密度,可以在数据中心档案存储上实现突破性应用,解决大容量和节能的存储技术难题。《自然》审稿人的评价该成果道:“这是一种具有突破性创新的Pb级光存储技术…”“与现有其它技术相比,该技术在性能方面提供了最高的光存储面密度…”“研究成果可能会带来数据中心档案数据存储的突破,解决大容量和节能的存储技术难题…”。(来源:上海光机所)帮数据中心处理“冷数据”随着算力作为数字经济时代新的生产力迅速发展,各地也在加码布局数据中心。近年来,我国算力相关政策密集出台。2020年4月,国家发改委首次将智算中心等算力基础设施纳入“新基建”的范畴;2021年5月,国家发改委等四部门联合发布了《全国一体化大数据中心协同创新体系算力枢纽实施方案》,首次提出全国算力网络枢纽节点布局;2022年2月,国家发改委等三部门同意了京津冀、长三角、粤港澳大湾区等8地启动国家算力枢纽节点建设,并规划了10个国家数据中心集群,标志着“东数西算”工程正式启动。就在近日,国家发改委、国家数据局、中央网信办、工信部、国家能源局五部门日前联合印发《深入实施“东数西算”工程加快构建全国一体化算力网的实施意见》(下称《实施意见》),提出到2025年底,普惠易用、绿色安全的综合算力基础设施体系初步成型。而在数据的分类中,有热数据、冷数据、温数据等。“冷数据”一般指的是那些时效性需求不太高的,“热数据”是对处理时间要求高、需要立刻做决策并运算的,例如自动驾驶、远程医疗等,“温数据”则是介于“冷数据”和“热数据”之间的。阮昊对记者解释,他们的成果主要存储的就是冷数据。“在所有数据中,80%以上都是冷数据,这些数据使用频率很少,但是需要永久保存,比如大科学装置做出来的实验数据。这类实验做一次非常不容易,这些访问速率没那么快但是又很重要的数据都要安全性地保存,我们的成果主要用在这类数据上面,因此特别适合数据中心的使用。”他补充举例,像处理热数据的固态硬盘、手机存储卡、存储条都很贵,处理百分之十几的温数据可以用磁存储、磁硬盘,另外80%冷数据就可以用光盘。Pb级光盘制备及读写方式示意图,来源:《自然》研究团队介绍,未来他们将加快原始创新和关键技术攻关,推动超大容量光存储的集成化和产业化进程,并拓展其在光显微成像、光显示、光信息处理领域的交叉应用,产出更多更优秀的创新成果。“关于产业化我们计划是5年左右应该有一个可以用的光盘和机器给消费者看。这当然也需要企业界和科研界一起努力。”阮昊说。...PC版:https://www.cnbeta.com.tw/articles/soft/1419981.htm手机版:https://m.cnbeta.com.tw/view/1419981.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人