天文学家发现原恒星逃离其诞生地的案例

天文学家发现原恒星逃离其诞生地的案例首先,在由多颗恒星组成的年轻恒星系统中,引力相互作用会导致一些恒星被抛射出去。其次,恒星可能会从坍缩过程或分子云或分子团块的动态相互作用中获得动能,导致它们最终逃逸到银河系中。轨迹相对清晰的恒星通常已经完全脱离了它们的诞生地。相比之下,幼年原恒星通常深深嵌入分子云中,因此很难测量它们的运动学特征。因此,有关逃逸恒星的观测数据还很不完整。首次观测到原恒星的离去然而现在,由中国科学院国家天文台、中国科学院上海天文台和广州大学的研究人员组成的联合团队,利用高分辨率分子谱线,首次发现了一颗离开其诞生地的原恒星,从而为逸散恒星的初始状态提供了新的观测证据。该研究发表在《天体物理学报》上。研究人员利用阿塔卡马大毫米波/亚毫米波天线阵(ALMA)对大量年轻恒星形成区样本进行了观测。在G352.63-1.07恒星形成区的发现在恒星形成区G352.63-1.07,他们发现了一个具有明显速度偏移的原恒星核心。他们在多条分子线中观测到了这个内核,所有这些都表明这颗原恒星的速度与其母体云不同。同时,这些分子线都紧密地追踪着致密内核,从而为测量恒星运动提供了一个独特的机会。根据分子线的光谱速度,原恒星相对于其母体丝状分子云有显著的蓝移,速度为-2.3km/s。同时,核心恰好位于母体云的中央倾角处,这表明核心曾经是分子云的一部分。核心的逸出速度(-2.3千米/秒)和空间偏移(0.025光年)表明,逸出发生在不到4000年前,动能高达1045尔格。这使得G352.63-1.07的核心逸出成为银河系恒星形成区中最年轻、能量最大的事件之一。此外,虽然中心恒星的逸出速度远低于星团中产生的高速抛射恒星,但它实际上与年轻恒星的平均弥散速度相当。这表明,云坍缩应该是驱动恒星逃逸的主要机制。"恒星是我们宇宙中巨大的核聚变反应堆。此次发现的逸出恒星仍处于起步阶段,"文章合著者、国家天文台星际介质组首席科学家李迪教授说。"这项工作捕捉到了猎户座分子云等附近活跃恒星形成区恒星逸出运动的初始时刻。它丰富了恒星起源的图景,也提出了一系列挑战"。未来,研究人员将对G352.63-1.07中的多恒星相互作用和爆炸性气体膨胀进行更深入的分析。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1403249.htm手机版:https://m.cnbeta.com.tw/view/1403249.htm

相关推荐

封面图片

天文学家利用模拟技术阐明气体流体在多恒星系统诞生中的作用

天文学家利用模拟技术阐明气体流体在多恒星系统诞生中的作用IRAS04239+2436三重原恒星的艺术印象。利用观测和模拟进行的新研究揭示了多恒星系统的形成过程。资料来源:ALMA(ESO/NAOJ/NRAO)大多数质量与太阳相近的恒星都是与其他恒星一起在多恒星系统中形成的。因此,了解多恒星系统的形成对恒星形成的整体理论非常重要。然而,由于其复杂性和缺乏高分辨率、高灵敏度的数据,天文学家对其形成情况并不确定。特别是,最近对原恒星的观测经常报告有气体流向原恒星的"流线"结构,但一直不清楚这些流线是如何形成的。三元原恒星IRAS04239+2436周围的气体分布,(左)ALMA观测到的SO发射,(右)超级计算机ATERUI数值模拟再现。左图中的原恒星A和B显示为蓝色,表示来自原恒星周围尘埃的无线电波。在原恒星A中,被认为存在两颗未解决的原恒星。右图中,三个原恒星的位置用蓝色叉号表示。资料来源:ALMA(ESO/NAOJ/NRAO),J.-E.Leeetal.Leeetal.由首尔国立大学教授Jeong-EunLee领导的一个国际研究小组利用阿塔卡马大型毫米/亚毫米波阵列(ALMA)观测了位于460光年外金牛座的三元原恒星系统IRAS04239+2436。研究小组发现,一氧化硫(SO)分子的排放物追踪了围绕该系统中形成的三颗原恒星的三条旋臂。与法政大学教授松本智明(TomoakiMatsumoto)利用日本国立天文台计算天体物理学中心的超级计算机"ATERUI"和"ATERUIII"进行的模拟比较表明,这三条旋臂是向三颗原恒星输送物质的流线。观测与模拟的结合首次揭示了流线是如何产生并促进中心原恒星的生长的。超级计算机"ATERUI"对多恒星形成的模拟。影片显示,多颗原恒星诞生于丝状湍流气体云中,它们在运行过程中会激发旋臂并扰动周围的气体。资料来源:松本智明、武田孝昭、4D2U项目、NAOJ...PC版:https://www.cnbeta.com.tw/articles/soft/1399065.htm手机版:https://m.cnbeta.com.tw/view/1399065.htm

封面图片

天文学家发现有关星系阻止恒星形成的重要新信息

天文学家发现有关星系阻止恒星形成的重要新信息艺术家绘制的宇宙射线驱动的风(蓝色和绿色)叠加在三棱柱星系M33(红色和白色)的可见光图像上,该图像由欧洲南方天文台智利帕拉纳尔天文台的VLT巡天望远镜观测。资料来源:基础科学研究所-IPM和欧洲南方天文台(ESO)。随着星系的长期演化,这些风是导致恒星形成率放缓的原因。然而,这种风的主要来源被认为是由黑洞和超新星爆炸产生的冲击波驱动的物质喷流。宇宙射线被认为是这种效应较小的贡献者,特别是在有大量恒星形成的星系下,如M33星系。伊朗基础科学研究所的FatemahTabatabaei说:"我们已经在我们的银河系和仙女座星系中看到了由宇宙射线驱动的星系风,这些星系的恒星形成率要弱得多,但以前在像M33这样的星系中没有见过。"M33是一个螺旋状星系,距离地球近300万光年,是本地星系群的成员,这一集团中也包括银河系。Tabatabaei和一个国际科学家团队对M33进行了详细的、多波长的VLA观测。此外,他们还利用了从早期的VLA、德国Effelsberg射电望远镜、毫米波、可见光和红外望远镜的观测中收集的信息。比我们的太阳大得多的恒星在它们的生命周期中加速运行,最终以超新星的形式爆炸。当爆炸的冲击波将粒子加速到几乎是光速的时候,就会产生宇宙射线。如果有足够的这些宇宙射线,就会产生压力,驱动风,将恒星形成所需的气体运走。美国国家射电天文台的威廉-科顿说:"VLA的观测表明,M33中的宇宙射线正在逃离它们诞生的区域,使它们能够驱动更广泛的风。"根据他们的观察,天文学家得出结论,在M33多产恒星形成的巨大复合体中,大量的超新星爆炸和超新星残骸使得这种宇宙射线驱动的风更有可能出现。Tabatabaei说:"这意味着宇宙射线可能是银河系风的一个更普遍的原因,特别是在宇宙历史的早期,当恒星形成以更高的速度发生时。"她补充说:"这种机制因此成为理解星系随时间演变的一个更重要的因素。"...PC版:https://www.cnbeta.com.tw/articles/soft/1333783.htm手机版:https://m.cnbeta.com.tw/view/1333783.htm

封面图片

天文学家发现行星形成的第一步 与理论预期相反

天文学家发现行星形成的第一步与理论预期相反天文学家已经非常善于发现恒星周围行星形成的迹象。然而,要完全掌握行星的形成,关键是要研究这一过程尚未开始的情况。但对年轻恒星金牛座DG的最新详细观测表明,它有一个光滑的原行星盘,没有行星形成的迹象。这次成功地没有发现行星的形成可能表明金牛座DG正处于行星形成的前夜。用ALMA观测到的金牛座DG周围磁盘的无线电波发射强度图像。圆盘中尚未形成星环,这表明它正处于行星形成之前。资料来源:ALMA(ESO/NAOJ/NRAO),S.Ohashietal.原行星盘和行星的成长行星是在原恒星(仍在形成过程中的年轻恒星)周围的气体和尘埃盘(称为原行星盘)中形成的。行星的生长速度非常缓慢,因此无法观察到行星的演变过程,因此天文学家需要观测许多处于行星形成过程中不同阶段的原恒星,以建立理论上的认识。这次,由日本国立天文台(NAOJ)的大桥谕(SatoshiOhashi)领导的国际研究小组利用阿塔卡马大型毫米/亚毫米波阵列(ALMA),对位于金牛座方向410光年外的一颗相对年轻的原恒星--DG金牛座周围的原行星盘进行了高分辨率观测。研究小组发现,DG金牛座的原行星盘非常光滑,没有任何表明行星正在形成的环。这让研究小组相信,金牛座DG系统将来会开始形成行星。意外发现和未来研究研究小组发现,在行星形成前的这一阶段,中心原恒星40AU(约为太阳系天王星轨道大小的两倍)范围内的尘粒仍然很小,而在这一半径之外,尘粒的体积已经开始增大,这是行星形成的第一步。这与行星形成始于星盘内部的理论预期相反。这些结果为行星开始形成时的尘埃分布和其他条件提供了令人惊讶的新信息。未来对更多实例的研究将进一步加深我们对行星形成的理解。参考文献:《ALMA三波段频率观测揭示的DGTau原恒星周围光滑盘中的尘埃富集和晶粒生长》,作者:SatoshiOhashi、MunetakeMomose、AkimasaKataoka、AyaEHiguchi、TakashiTsukagoshi、TakahiroUeda、ClaudioCodella、LindaPodio、TomoyukiHanawa、NamiSakai、HiroshiKobayashi、SatoshiOkuzumi和HidekazuTanaka,2023年8月28日,《天体物理学报》。DOI:10.3847/1538-4357/ace9b9编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1404957.htm手机版:https://m.cnbeta.com.tw/view/1404957.htm

封面图片

天文学家借助年轻恒星周围的水蒸气揭开行星形成的“宇宙秘方”

天文学家借助年轻恒星周围的水蒸气揭开行星形成的“宇宙秘方”天文观测的突破这些新发现得益于智利阿塔卡马沙漠中的望远镜群--阿塔卡马大型毫米波/亚毫米波阵列(ALMA)。曼彻斯特大学的朱德瑞尔班克天体物理中心(JodrellBankCentreforAstrophysics)是英国ALMA区域中心节点(UKARC)的所在地,该中心为使用ALMA的英国天文学家提供支持。曼彻斯特大学高级客座研究员AnitaRichards博士曾是英国ARC的成员,她在验证"波段5"接收器系统运行的小组中发挥了关键作用,该系统对于ALMA生成详细的水图像至关重要。理查兹博士说:"直接测量行星形成过程中的水蒸气含量,让我们更进一步了解制造海洋世界有多容易--有多少水是附着在凝结的岩石上,还是主要是后来添加到几乎完全形成的行星上的?这种观测需要最干燥的条件,只有利用智利的ALMA阵列才能进行如此详细的观测"。天文学家在一颗年轻恒星周围的圆盘中发现了水蒸气,而这正是行星可能正在形成的地方。在这张图片中,来自阿塔卡马大型毫米波/亚毫米波阵列(ALMA)的新观测数据(ESO是该阵列的合作伙伴)显示了水蒸气的蓝色色调。在年轻恒星所在的圆盘中心附近,环境温度更高,气体也更明亮。红色的环是ALMA之前的观测结果,显示了恒星周围尘埃的分布。资料来源:ALMA(ESO/NAOJ/NRAO)/S.Facchinietal.来自金牛座HL星系统的发现发表在《自然-天文学》(NatureAstronomy)杂志上的观测结果表明,在距离地球450光年的金牛座年轻的类太阳恒星HLTauri的内盘中,水的数量至少是地球所有海洋的三倍。领导这项研究的意大利米兰大学天文学家斯特凡诺-法奇尼说:"我从未想象过,我们能在行星可能形成的同一区域捕捉到水蒸气海洋的图像"。共同作者、意大利博洛尼亚大学天文学家莱昂纳多-特斯蒂补充说:"在距离我们450光年的地方,我们不仅能探测到水蒸气,还能捕捉到详细的图像,并对水蒸气进行空间分辨,这确实非常了不起。"利用ALMA进行的这些观测可以在一千米的距离上显示出像头发丝一样细小的细节,使天文学家能够确定水在圆盘不同区域的分布情况。对行星形成的影响在金牛座HL星圆盘存在一个已知缺口的区域发现了大量的水--一个行星可能正在形成的地方。在富含气体和尘埃的圆盘上,年轻的类行星天体在聚集物质并成长的过程中,会在圆盘上形成径向间隙。这表明,这些水蒸气可能会影响在这些区域形成的行星的化学成分。但是,用地面望远镜观测水并非易事,因为地球大气中大量的水蒸气会降低天文信号的质量。ALMA由欧洲南方天文台(ESO)及其国际合作伙伴共同运营,位于海拔约5000米的高海拔地区,建在一个高而干燥的环境中,专门用于最大限度地减少这种退化,从而提供了卓越的观测条件。迄今为止,ALMA是唯一能够绘制冷行星形成圆盘中水分布图的设施。构成圆盘的尘粒是行星形成的种子,它们相互碰撞并聚集成越来越大的天体,围绕恒星运行。天文学家认为,在足够冷的地方,水会冻结在尘粒上,尘粒会更有效地粘在一起--这是行星形成的理想场所。英国天文学研究中心(UKARC)的成员正在为ALMA的重大升级做出贡献,ALMA与欧洲南方天文台(ESO)的超大望远镜(ELT)也将在十年内上线,这将为行星的形成以及水在其中扮演的角色提供更清晰的视角。特别是METIS(中红外ELT成像仪和摄谱仪),它将为天文学家提供行星形成盘内部区域的无与伦比的视角,像地球这样的行星就是在这里形成的。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1423109.htm手机版:https://m.cnbeta.com.tw/view/1423109.htm

封面图片

恒星音乐会:天文学家聆听闪烁恒星的声音

恒星音乐会:天文学家聆听闪烁恒星的声音美国西北大学(NorthwesternUniversity)的科学家们首次开发了三维模拟技术,研究从一颗大质量恒星的内核到外表面的能量涟漪,为了解恒星固有的"闪烁"提供了新的视角。研究小组还将这些波转换成声音,使听众能够"听到"恒星内部及其自然闪烁的声音。资料来源:E.H.Andersetal.研究小组还首次将这些气体波纹转换成声波,使听众能够听到恒星内部和"闪烁"的声音。这真是太迷人了。这项研究发表在《自然-天文学》杂志上。领导这项研究的西北大学埃文-安德斯(EvanAnders)说:"恒星内核的运动会像海洋一样掀起波浪。当波浪到达恒星表面时,它们会使恒星闪烁,而天文学家或许能够观测到这种闪烁。我们首次开发出了计算机模型,让我们能够确定恒星在这些波的作用下闪烁的程度。这项工作使未来的太空望远镜能够探测恒星锻造我们赖以生存和呼吸的元素的中心区域。"安德斯是西北大学天体物理学跨学科探索与研究中心(CIERA)的博士后研究员。研究报告的共同作者、西北大学麦考密克工程学院工程科学与应用数学助理教授、CIERA成员丹尼尔-莱科阿内(DanielLecoanet)为他提供指导。三维模拟大型恒星内核(中)的湍流对流如何产生波纹,波纹向外荡漾,并在恒星表面附近产生共振。通过研究振动引起的恒星亮度变化,科学家们有朝一日可以更好地了解大型恒星核心深处的过程。图片来源:E.H.Anders等人/《自然-天文学》2023所有恒星都有一个对流区,这是一个挥发性的混乱区域,气体在这里搅动,将热量向外推送。对于大质量恒星(质量至少是太阳的1.2倍)来说,对流区位于恒星的核心。恒星内部的对流类似于助长雷暴的过程。冷却的空气下降、升温、再上升。这是一个输送热量的湍流过程。它还会产生波浪--导致星光变暗和变亮的小溪流,产生微妙的闪烁。由于大质量恒星的内核被遮挡住了,安德斯和他的团队试图模拟它们隐藏的对流。在研究了湍流内核对流的特性、波的特征以及这些波可能具有的观测特征的基础上,研究小组的新模拟包含了所有相关的物理知识,能够准确预测恒星的亮度如何根据对流产生的波而发生变化。对流产生波之后,这些波会在模拟恒星内部反弹。一些波最终会出现在恒星表面,产生闪烁效果,而另一些波则会被困住,继续四处弹跳。为了分离出发射到表面并产生闪烁效果的波,安德斯和他的团队建立了一个滤波器,用来描述波在模拟恒星内部是如何反弹的。安德斯解释说:"我们首先在恒星周围放了一层阻尼层--就像录音室里的软垫墙一样--这样我们就能准确测量核心对流是如何产生波浪的。"安德斯将其比作音乐工作室,利用隔音软垫墙将环境的声学效果降至最低,这样音乐家就能提取音乐的"纯净声音"。然后,音乐家们会使用滤波器并对这些录音进行工程处理,以达到他们想要的效果。通过三种尺寸的大质量恒星播放古斯塔夫-霍尔斯特的《木星》。资料来源:美国西北大学同样,安德斯和他的合作者将他们的滤波器应用于他们测量到的从对流核心传出的纯波。然后,他们跟踪了在一颗模型恒星中跳动的波,最终发现他们的滤波器准确地描述了恒星如何改变来自内核的波。随后,研究人员开发了一种不同的滤波器,用于描述波在真实恒星内部的反弹情况。应用这种滤波器后,得到的模拟结果显示了天文学家期望通过大功率望远镜观测时波浪出现的方式。安德斯说:"恒星变亮或变暗取决于恒星内部发生的各种动态变化。这些波引起的闪烁非常微妙,我们的眼睛不够灵敏,无法看到。但未来强大的望远镜或许能够探测到它。"安德斯和他的合作者将录音室的类比向前推进了一步,接下来他们利用模拟产生了声音。由于这些波超出了人类的听觉范围,研究人员均匀地提高了波的频率,使它们变得清晰可闻。根据大质量恒星的大小或亮度,对流产生的波对应不同的声音。例如,从一颗大恒星的内核中产生的波,发出的声音就像一把扭曲的射线枪,轰击着外星景观。但当这些波到达恒星表面时,恒星会改变这些声音。对于大型恒星来说,类似射线枪的脉冲会转变为低沉的回声,在空旷的房间里回荡。另一方面,中型恒星表面的波浪会让人联想到风吹地动时发出的持续的嗡嗡声。而小恒星表面的波浪听起来就像天气警报器发出的平淡警报声。通过三种大小的大质量恒星播放《小星星》的视觉效果。资料来源:美国西北大学接下来,安德斯和他的团队通过不同的恒星播放歌曲,聆听恒星如何改变歌曲。他们将"木星"(作曲家古斯塔夫-霍尔斯特的管弦乐组曲"行星"中的一个乐章)和"一闪一闪亮晶晶"的简短音频片段穿过三种大小(大、中、小)的大质量恒星。在恒星中传播时,所有歌曲听起来都遥远而缠绵--就像《爱丽丝梦游仙境》中的歌曲。安德斯说:"我们很好奇,如果一首歌通过恒星传播,听起来会是怎样的。恒星改变了音乐,相应地,也改变了如果我们看到波浪在恒星表面闪烁时的样子。"...PC版:https://www.cnbeta.com.tw/articles/soft/1386189.htm手机版:https://m.cnbeta.com.tw/view/1386189.htm

封面图片

天文学家发现前所未见的摧毁恒星的方法

天文学家发现前所未见的摧毁恒星的方法恒星死亡的本质宇宙中的恒星通常以可预测的方式结束自己的生命,这取决于它们的质量。像太阳这样质量相对较低的恒星在衰老过程中会脱落外层,最终褪色成为白矮星。质量更大的恒星燃烧得更旺盛,在超新星大爆炸中死亡得更快,会产生中子星和黑洞这样的超密集天体。如果两颗这样的恒星残骸形成双星系统,它们最终也会发生碰撞。然而,新的研究指出了一种假想已久但从未见过的第四种选择。这幅艺术家印象图展示了天文学家是如何利用由美国国家科学基金会NOIRLab负责操作的双子座南望远镜来研究强大的伽马射线暴(GRB)的,他们可能发现了一种前所未见的摧毁恒星的方法。与大多数由大质量恒星爆炸或中子星偶然合并引起的GRB不同,天文学家得出的结论是,这个GRB是由恒星或恒星残骸在一个古老星系核心的超大质量黑洞周围的拥挤环境中碰撞产生的。揭开新发现的面纱在寻找长持续伽玛射线暴(GRB)的起源时,天文学家利用智利的双子座南望远镜(由美国国家科学基金会NOIRLab运营的国际双子座天文台的一部分)、北欧光学望远镜和NASA/ESA哈勃太空望远镜,发现了恒星或恒星残余物在一个古老星系的超大质量黑洞附近的混乱而密集的区域中发生类似拆迁的碰撞的证据。荷兰拉德布德大学天文学家、《自然-天文学》(NatureAstronomy)杂志上一篇论文的第一作者安德鲁-莱万(AndrewLevan)说:"这些新结果表明,恒星可能会在宇宙中一些密度最大的区域遭遇灭顶之灾,在那里它们可能会被驱动发生碰撞。这对于了解恒星是如何死亡的,以及回答其他问题都是令人兴奋的,比如有哪些意想不到的来源可能会产生引力波,而我们可以在地球上探测到这些引力波。"观测证据和发现远古星系早已过了恒星形成的鼎盛时期,即使有巨型恒星,也所剩无几,而巨型恒星正是长GRB的主要来源。然而,它们的内核却充斥着恒星和各种超密集恒星残骸,如白矮星、中子星和黑洞。天文学家长期以来一直怀疑,在围绕着超大质量黑洞的汹涌蜂窝中,两个恒星天体迟早会发生碰撞,从而产生GRB。然而,这种合并的证据一直难以捉摸。天文学家利用由美国国家科学基金会NOIRLab运营的国际双子座天文台研究一个强大的伽马射线暴(GRB)时,可能观测到了一种前所未见的摧毁恒星的方式。与大多数由大质量恒星爆炸或中子星偶然合并引起的伽玛射线暴不同,天文学家得出的结论是,这个伽玛射线暴是由恒星或恒星残骸在一个古老星系核心的超大质量黑洞周围的拥挤环境中碰撞产生的。资料来源:国际双子座天文台/NOIRLab/NSF/AURA/M.Garlick/M.扎马尼2019年10月19日,美国宇航局尼尔-盖尔斯-斯威夫特天文台(NeilGehrelsSwiftObservatory)探测到了一道持续一分多钟的明亮伽马射线闪光,这是此类事件发生的第一个蛛丝马迹。任何持续时间超过两秒的伽玛射线暴都被认为是"长脉冲"。这种爆发通常来自超新星的死亡,其质量至少是太阳质量的10倍--但并非总是如此。研究人员随后利用"双子座南"对GRB逐渐消失的余辉进行了长期观测,以进一步了解其起源。通过观测,天文学家们将GRB的位置精确定位在距离一个古老星系的核心不到100光年的区域,这使得它非常靠近该星系的超大质量黑洞。研究人员还没有发现相应超新星的证据,而超新星会在双子座南研究的光线上留下印记。洞察GRB的起源莱万说:"我们的后续观测告诉我们,这次爆发并不是一颗大质量恒星的坍缩,而很可能是由两个紧凑的天体合并引起的。通过把它的位置精确定位到先前确定的一个古老星系的中心,我们首次获得了恒星走向灭亡的新途径的诱人证据。"双子座南望远镜是由美国国家科学基金会NOIRLab运营的国际双子座天文台的一半,从一个令人眩晕的高度可以看到双子座南望远镜的全部规模和偏远程度。双子座南望远镜位于海拔2715米(8900英尺)的CerroPachón山上,得益于当地稳定的大气条件。在背景中绵延的智利安第斯山脉之上,几乎可以感受到干燥的空气,这种空气可以减轻望远镜的"视力"。这张照片还拍摄到望远镜的8米镜面透过穹顶结构探出头来,这在白天是很不寻常的。图片来源:国际双子座天文台/NOIRLab/NSF/AURA/T.Matsopoulos在正常的星系环境中,中子星和黑洞等恒星残骸碰撞产生的长GRB被认为是非常罕见的。然而,远古星系的内核并不正常,可能有一百万甚至更多的恒星挤在一个只有几光年宽的区域里。这种极高的恒星群密度可能足以导致偶尔发生的恒星碰撞,尤其是在超大质量黑洞的巨大引力影响下,它会扰乱恒星的运动,使它们向随机方向飞去。最终,这些不听话的恒星会相交合并,引发巨大的爆炸,在遥远的宇宙空间都能观测到。这种事件有可能在宇宙中类似的拥挤区域经常发生,但直到现在才被人们注意到。它们之所以不为人知,一个可能的原因是星系中心充满了尘埃和气体,这可能会遮挡住GRB的初始闪光和由此产生的余辉。这次被确认为GRB191019A的GRB可能是一个罕见的例外,它让天文学家能够探测到这一爆发并研究其余辉。未来研究和影响研究人员希望发现更多有关这些事件的信息。他们希望能将GRB探测与相应的引力波探测相匹配,这将揭示更多关于这些事件的真实性质,并确认它们的起源,即使是在最阴暗的环境中。维拉-C-鲁宾天文台(VeraC.RubinObservatory)将于2025年投入使用,它在这类研究中将发挥不可估量的作用。莱万说:"研究像这样的伽马射线暴是一个很好的例子,它说明了从探测伽马射线暴,到用双子座这样的望远镜发现余辉和距离,再到用整个电磁波谱的观测结果对事件进行详细分析,许多设施的合作确实推动了这一领域的发展。"国家科学基金会国际双子座天文台项目主任马丁-斯蒂尔(MartinStill)说:"这些观测为双子座的丰富遗产增添了新的内容,加深了我们对恒星演化的理解。"这些时间敏感性观测证明了双子座天文台的灵活运作和对宇宙中遥远的动态事件的敏感性。"...PC版:https://www.cnbeta.com.tw/articles/soft/1379599.htm手机版:https://m.cnbeta.com.tw/view/1379599.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人