新论文回顾力学因素如何改变固态电池的循环过程

新论文回顾力学因素如何改变固态电池的循环过程该图像概念化了固态锂电池玻璃离子导体的加工、结构和机械行为。图片来源:AdamMalin/ORNL,美国能源部"我们的目标是强调力学在电池性能中的重要性,"ORNL多物理场建模与流动小组的科学家SergiyKalnaus说。"很多研究都侧重于化学或电学特性,却忽略了显示潜在的力学特性。"该团队横跨ORNL的多个研究领域,包括计算、化学和材料科学。他们从不同的科学视角出发,对影响SSB的各种条件进行了综合研究,从而描绘出一幅更具凝聚力的图景。Kalnaus说:"我们正在努力弥合学科之间的鸿沟。"固体电解质:更安全、更坚固的替代品在电池中,带电粒子流经称为电解质的材料。大多数电解质都是液体,如电动汽车中的锂离子电池,但固体电解质也正在开发中。这些导体通常由玻璃或陶瓷制成,具有更高的安全性和强度等优点。Kalnaus说:"真正的固态电池内部没有易燃液体。这意味着它们的危险性低于目前常用的电池。"然而,由于这些新型材料所面临的挑战,固态电解质仍处于早期开发阶段。固态电池组件在充电和质量传输过程中会膨胀和收缩,从而改变系统。电极在电池运行过程中不断变形,在与固体电解质的界面处产生分层和空隙。"在当今的系统中,最好的解决办法是施加大量压力,使所有东西保持在一起。这些尺寸变化会损坏固体电解质,因为固体电解质是由脆性材料制成的。它们经常在应变和压力作用下破裂。如果能使这些材料更具延展性,它们就能通过流动而不是开裂来承受压力。通过一些在陶瓷电解质中引入小晶体缺陷的技术,可以实现这种行为。工程阳极和固体电解质电子通过阳极离开系统。在固态电池中,阳极可由能量密度最高的纯锂金属制成。虽然这种材料在电池功率方面具有优势,但它也会产生压力,从而损坏电解质。"在充电过程中,不均匀的电镀和应力消除机制的缺失会造成应力集中。这些应力集中会产生很大的压力,导致锂金属流动,"ORNL的机械性能和力学小组组长ErikHerbert说。"为了优化固态电解质分离器的性能和寿命,我们需要设计下一代阳极和固态电解质,使其能够在固态电解质分离器不断裂的情况下保持界面的机械稳定性。"该团队的工作是ORNL长期研究SSB材料历史的一部分。20世纪90年代初,该实验室开发出一种被称为氧化磷锂(或LiPON)的玻璃电解质。锂磷氧化物已被广泛用作薄膜电池的电解质,这种电池具有金属锂阳极。这种元件可以承受多次充放电循环而不发生故障,这主要归功于LiPON的延展性。当遇到机械应力时,它会流动而不是开裂。"近年来,我们了解到LiPON具有强大的机械性能,可以补充其化学和电化学耐久性,"领导该材料开发团队的ORNL科学家NancyDudney说。该团队的努力凸显了SSB研究不足的一个方面--了解影响SSB寿命和功效的因素。"Kalnaus说:"科学界需要一个路线图。在我们的论文中,我们概述了固态电解质的材料力学,鼓励科学家在设计新型电池时考虑这些因素。"参考文献"固态电池:力学的关键作用",作者:SergiyKalnaus、NancyJ.Dudney、AndrewS.Westover、ErikHerbert和SteveHackney,2023年9月22日,《科学》。DOI:10.1126/science.abg5998编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1403615.htm手机版:https://m.cnbeta.com.tw/view/1403615.htm

相关推荐

封面图片

Science:固态电池未决 研究材料力学

Science:固态电池未决研究材料力学为什么要研究力学结构?要怎么了解不同材料下固态电池的力学结构?因为力学结构导致固态电池失效,又有什么对应的解决办法?来自美国橡树岭国家实验室和密歇根理工大学的五位作者,详细解答了这些问题。固态电池中力学的关键作用既然需要关注固态电池的力学结构,那么如何评估和设计呢?论文提供了一个理解和设计力学结构可靠的固态电池的框架。该框架包括三个方面:1、识别和理解该固态电池中局部应变的来源;2、了解这种应力,特别是在电池界面处,以及电池材料对这些应力的响应;3、设计具有所需应力和应变演变的电池材料和电池单元。其中,应力是材料受到的外力大小,应变是指材料在受到外力时的形变程度。以固态电解质为例,众所周知,固态锂电池比液态锂电池更安全的关键因素是,固态电池中的固态电解质可以有效抑制锂枝晶的生长。锂枝晶而不同的固态电解质材料对锂枝晶抑制效果也存在不同,评估抑制效果好坏的一个标准就是该材料的应力和应变。如果这种固态电解质即使受到很大的应力,也不易发生弹性形变,比如氧化物电解质,这意味着这种固态电解质材料能有效抑制锂枝晶生长;但同时,氧化物电解质的硬度和刚度很高,更有可能发生断裂等情况,影响固态电池的性能。应力-应变的关系曲线,来源参考论文2所以,在选择固态电解质时选择各项性能更平衡的材料,更有利于提高固态电池的性能和使用寿命。这也是为什么需要研究固态锂电池的力学结构。固态锂电池的充放电过程伴随着阴阳极体积的变化,比如阴极中的晶格拉伸和扭曲以及阳极中的金属锂沉积。固态锂电池中对应的力学和传递现象而液态锂电池得益于液态电解质,阴阳极体积变化不会影响电池内部的受力结构,但因为固态锂电池中固态含量较高,阴阳极体积的改变可能会影响固态锂电池的稳定性。假如阳极某一处锂沉积过多,会导致该处的应力增大。假如应力超过了固态电解质承受的极限,材料形变过大(也就是应变程度),会有材料断裂、粉化等风险。所以,材料的力学性质的变化会影响材料的电化学性质,进而导致电池性能恶化甚至失效。除了固态电解质,电极的组成成分(活性物质、粘结剂、导电剂等),所使用的材料也会影响到电池的力学结构,这篇论文提供的框架可以用来研究这些材料的力学特性。作者希望通过这篇论文能更方便研究人员理解固态电池发生故障的潜在原因,同时论文也给出了这些问题的解决方案。包括:根据长度尺度、温度和应变速率(电流密度)来研究锂金属的应力缓解机制;根据长度尺度、温度和应变速率来研究陶瓷、玻璃和非晶陶瓷的应力缓解机制;讨论陶瓷、玻璃电解质的工程延展性;设计一种锂金属阳极,既能消除锂金属的不均匀沉积和剥离,也能缓解锂-电解质界面的应力;设计一种阴极活性材料,具有零循环应变、抗断裂的特点,或者具有一定的延展性;设计一种复合阴极,实现应变最小化、应力释放最大化;进行详细建模,以描述固态电池中应力和应变的演变,包括长度尺度效应(length-scaleeffects)、摩擦(friction)、粘附(adhesion)和蠕变(creep)。那么,又是谁完成了这篇论文?论文作者简介论文一作为SergiyKalnaus,来自美国橡树岭国家实验室,是计算科学与工程部的高级研究员。SergiyKalnaus拥有内华达大学机械工程博士学位,曾获得美国能源部颁发的科学技术杰出贡献奖。另外还拥有四项专利,其中三项关于电解质,一项关于电极浆料,发表过34篇论文,被引次数为3195次。论文作者还包括NancyJ.Dudney,同样来自橡树岭国家实验室,是化学科学部院士及小组组长。NancyJ.Dudney本科就读于威廉玛丽学院化学专业,毕业后直接升入麻省理工学院陶瓷工程学院,并完成博士学位。曾获得美国能源部颁发的杰出发明家称号,获得大大小小超13个奖项,拥有超过14项专利,目前正在研究混合动力汽车电池的新型材料。论文作者还有同样来自化学科学部的AndrewS.Westover,是该部门的材料科学家。AndrewS.Westover已经在《ACS能源快报》、《材料化学》等多个期刊上发表超25篇论文,其中还包括电化学三大顶刊之一电化学学会杂志JES,被引次数达到3292次。目标是实现下一代能源存储,包括固态锂电池。论文的作者还有ErikHerbert,来自橡树岭国家实验室材料科学与技术部。ErikHerbert同时还是密歇根理工大学,材料科学与工程专业的兼职教授,在田纳西大学取得材料科学与工程的博士学位。一共发表14篇论文,被引次数达到4288次。论文的最后一位作者是SteveHackney,是密歇根理工大学的材料科学与工程专业的全职教授。SteveHackney本科就读于詹姆斯麦迪逊大学化学专业,硕士和博士均就读于弗吉尼亚大学材料科学专业,研究方向包括锂离子电池、陶瓷电池材料、电池薄膜和纳米结构等。本文从固态电池领域的领先研究出发,系统地提出了固态电池的力学结构框架,重点关注应力的产生、预防和缓解机制,提出了多个解决方案。当下大多数固态电池研究都致力于改善电解质的离子传输速率和电化学稳定性,这篇论文则弥补了这一差距,也有利于开发能量密度更高、性能更优、更安全稳定的固态电池。...PC版:https://www.cnbeta.com.tw/articles/soft/1386851.htm手机版:https://m.cnbeta.com.tw/view/1386851.htm

封面图片

研究人员巧妙的调整使固态电池的充电速度提高一倍

研究人员巧妙的调整使固态电池的充电速度提高一倍ORNL的研究人员开发了一种新的压制方法,如右图蓝圈所示,与传统加工的材料相比,它能产生更均匀的固体电解质,如左图灰圈所示。这种材料可以被整合到电池系统中,中间的位置,以提高稳定性和速率性能。资料来源:AndySproles/ORNL,U.S.Dept.ofEnergy这些电池使用固体电解质而不是潜在的易燃液体。当电池充电或运行时,离子通过电极之间的电解质在电极之间移动。一种压制固体电解质的新方法实际上消除了阻碍离子流动的微小气穴,因此电池的充电速度提高了一倍。ORNL的首席研究员MarmDixit说,这种方法涉及在将电解质摊开后加热压力机,然后让电解质在压力下冷却。由此产生的材料的导电性能几乎提高了1000倍。Dixit说:"这是同样的材料,只是改变了制造它的方式,同时在许多方面改善了电池的性能。"这些结果证明了在工业规模上处理固体电解质的途径,同时为更可靠的电池提供了对其内部结构的前所未有的控制。...PC版:https://www.cnbeta.com.tw/articles/soft/1368503.htm手机版:https://m.cnbeta.com.tw/view/1368503.htm

封面图片

人工固态电解质层(ASEI)的发明有望在未来全面提高电池的功能和寿命

人工固态电解质层(ASEI)的发明有望在未来全面提高电池的功能和寿命金属锂因其能量密度优于其他材料而被选为电池阳极,这是一个明智的选择。然而,电极与电解液之间的界面存在挑战,这为在未来应用中实现更安全、更高效的性能提供了改进机会。金属锂阳极的挑战和解决方案清华大学的研究人员一开始热衷于用金属锂阳极取代石墨阳极,以构建能量密度更高的电池系统。然而,锂金属并不稳定,很容易与电解质发生反应,形成固体-电解质相(SEI)。遗憾的是,天然的SEI既脆又易碎,因此寿命和性能都很差。在此,研究人员研究了一种天然SEI的替代品,它可以有效缓解电池系统内的副反应。答案就是ASEI:人工固态电解质相。ASEI纠正了困扰裸锂金属阳极的一些问题,使其成为更安全、更可靠、甚至更强大的电源,可更放心地用于电动汽车和其他类似应用。研究成果的发表和意义9月25日,研究人员在《能源材料与器件》(EnergyMaterialsandDevices)杂志上发表了他们的研究成果。电池技术正在彻底改变我们的生活方式,与每个人的生活息息相关。为了实现真正的无碳经济,需要性能更好的电池来取代目前的锂离子电池。每个楔形层由不同的电极-电解质界面结构组成,有助于对锂金属电极进行实用的全面设计。资料来源:王艳艳,阿德莱德大学锂金属电池(LMB)就是这样一种候选电池。然而,阳极(金属锂)与电解质具有反应性,在电池运行过程中会在金属锂表面形成钝化层,即固体-电解质间相。锂金属阳极的另一个问题是电池充电时出现的所谓"枝晶生长"。枝晶看起来像树枝结构,会造成电池内部损坏,刺穿隔膜导致短路、性能不佳和潜在的安全隐患。这些弱点降低了锂金属电池板的实用性,并提出了一些必须解决的挑战。改进锂金属阳极的策略上文介绍了一些可用于制造更有效、更安全的锂金属阳极的策略。研究人员发现,要改进锂金属阳极,必须使锂离子分布均匀,这有助于减少电池负电荷区域的沉积物。这反过来又会减少枝晶的形成,从而防止过早衰变和短路。此外,在确保各层电绝缘的同时,为锂离子扩散提供更便捷的途径,有助于在电池循环过程中保持结构的物理和化学完整性。最重要的是,减少电极与电解液界面之间的应变可确保各层之间的适当连接,而这正是电池功能的重要组成部分。ASEI层的潜力和未来方向看来最有潜力的策略是聚合物ASEI层和无机-有机混合ASEI层。聚合物层在设计上有足够的可调节性,强度和弹性都很容易调节。聚合物层还具有与电解质相似的官能团,因此具有极高的兼容性;而这种兼容性正是其他元件所缺乏的主要方面之一。无机-有机混合层的最大优点是减少了层厚度,明显改善了层内成分的分布,从而提高了电池的整体性能。ASEI层的前景是光明的,但也需要一些改进。研究人员主要希望改善ASEI层在金属表面的附着力,从而全面提高电池的功能和寿命。需要注意的其他方面还有:层内结构和化学成分的稳定性,以及尽量减小层的厚度以提高金属电极的能量密度。一旦这些问题得到解决,改进型锂金属电池的前路就会一片光明。了解更多:https://doi.org/10.26599/EMD.2023.9370005...PC版:https://www.cnbeta.com.tw/articles/soft/1397963.htm手机版:https://m.cnbeta.com.tw/view/1397963.htm

封面图片

超强全固态锂电池电解质问世 12分钟快充下可稳定循环超2000周期

超强全固态锂电池电解质问世12分钟快充下可稳定循环超2000周期马骋曾介绍,固态锂电池中的固态电解质,可以杜绝液态电解质带来的“易燃易爆”与漏液等问题,实现安全储能。固态电解质是固态锂电池最核心的部件,但其生产成本和综合性能往往不可兼得,难以满足商业化需求。“虽然固态锂电池具有更高安全性,但其核心部件——固态电解质的原材料成本大多非常高,并且相当一部分性能很好的固态电解质对湿度的稳定性不佳,需要在露点不超过零下40摄氏度的环境下制备和储存,极大增加了生产成本。”马骋坦言,这为全固态电池的商业化带来巨大挑战。超强全固态锂电池电解质问世据安徽日报报道,为了满足实际应用的需求,全固态锂电池的固态电解质至少需要同时具备三个条件:高离子电导率——室温下超过1毫西门子每厘米,良好的可变形性——250至350兆帕下实现90%以上致密,以及足够低廉的成本——低于50美元每公斤。但是,目前被广泛研究的氧化物、硫化物、氯化物固态电解质都无法同时满足这些条件。此次研究中,马骋不再聚焦于上述氧化物、硫化物、氯化物中的任何一种,而是转向氧氯化物,设计并合成了一种新型固态电解质——氧氯化锆锂。这种材料具有很强的成本优势。如果以水合氢氧化锂、氯化锂、氯化锆进行合成,它的原材料成本仅为11.6美元每公斤,很好地满足了上述50美元每公斤的要求。而如果以水合氧氯化锆、氯化锂、氯化锆进行合成,氧氯化锆锂的成本可以进一步降低到约7美元每公斤,远低于目前最具成本优势的固态电解质氯化锆锂(10.78美元每公斤),并且不到硫化物和稀土基、铟基氯化物固态电解质的4%。在具备极强成本优势的同时,氧氯化锆锂的综合性能与目前最先进的硫化物、氯化物固态电解质相当。它的室温离子电导率高达2.42毫西门子每厘米,超过了应用所需要的1毫西门子每厘米,并且在目前报道的各类固态电解质中位居前列。与此同时,它良好的可变形性使材料在300兆帕压力下能达到94.2%致密,可以很好地满足应用需求,也优于以易变形性著称的硫化物、氯化物固态电解质。实验证明,由氧氯化锆锂和高镍三元正极组成的全固态锂电池展示了极为优异的性能:在12分钟快速充电的条件下,该电池仍然成功地在室温稳定循环2000周期以上。目前,中国也有多家电池企业、整车企业以及科研院所等,纷纷布局固态电池产业链上下游。但基于全固态电池的技术难度和高成本,中国企业大部分采取从半固态再到固态的渐进式研发路线,目前公布进展多集中在半固态电池上。日本全固态电池获得新突破在固态锂电池产业化道路上,日企较为激进。今年6月初,丰田宣布固态电池商业化的最新规划,最早到2027年,丰田就将向市场投放搭载固态电池的电动汽车,充电不到10分钟即可行驶约1200公里。日产计划在2028年推出首款搭载固态电池的量产车型;本田规划在2024年启用固态电池的实验生产线,所生产的电池将用于2020年代后半期推出的车型,该生产线的投资将达到430亿日元(约合21亿元人民币)。据界面新闻7月16日报道,近日,日本东京工业大学特聘教授菅野了次等人组成的研究团队,成功提高了全固态电池的快速充电性能和容量。该研究通过新开发基础材料、重新研究制造工艺等方式得以实现,相关文章发表在美国《科学》杂志上。日本东京工业大的上述研究,利用高熵材料设计开发了一种高离子导电性的固体电解质,通过增加已知锂快离子导体的成分复杂性,使得锂离子电导率约为传统材料的2.3-3.8倍,从而能缩短电池充电时间。这意味着,影响电池充电性能的指标较当前传统电池相比最多可提高3.8倍,为目前全球最高水平。此外,研究团队改良了制造工艺,负极采用锂金属代替传统的石墨,使得正极容量按单位电极面积计算较当前提高1.8倍。试制的全固态电池每平方厘米电极的电池容量超过20毫安,这也是全球目前公布的最高水平。...PC版:https://www.cnbeta.com.tw/articles/soft/1371329.htm手机版:https://m.cnbeta.com.tw/view/1371329.htm

封面图片

固态电池研发之难 连宁王都连声叫苦

固态电池研发之难连宁王都连声叫苦近年来,随着海内外多家企业接连给出固态电池的量产时间点,业内对固态电池走向落地应用的期望值有所提升,二级市场也纷纷作出反应,与固态电池相关的概念股今年接连涨停。为何行业与资本市场对此纷纷看好这项技术?作为动力电池的新形态,其是否会替代目前主流的三元锂电池和磷酸铁锂电池?动力电池的“终极路线”所谓固态电池,简单理解即一种使用固体电极和固体电解质的电池。现有的动力锂电池材料体系包含碳/硅负极、多孔隔膜以及液体电解质,通过锂离子的移动而产生电流。而全固态电池是一个完全致密的状态,采用固态电解质和固态隔膜,碳/硅负极改为金属锂负极,充电时,锂金属会沉积在负极上,在放电的过程中溶解。基于这种材料体系的转变,固态电池有着液态电池无法企及的优势。例如,固态电池更为稳定,不易泄漏、不易燃烧,大大降低了电池起火爆炸的风险,安全性更高。另外,由于能量密度更高,可达到400Wh/kg以上(作为对比,磷酸铁锂电池的能量密度一般在100Wh/kg~180Wh/kg,三元锂电池的能量密度通常在150Wh/kg~250Wh/kg),其在性能表现上也优于液态电池,充电速度更快(最高可超过10C)、续航里程更长。同时,全固态电池的电解质在-30°C和100°C的范围内都不会凝固,不会气化,这意味着冬天在寒冷地区不用担心续航问题,也不需要很复杂的热管理。这也就不难理解为何固态电池备受业界推崇,成为海内外车企争相布局的领域。从全球厂商的研发路径来看,固态电池主要有聚合物、氧化物和硫化物三种研发路线。不过,目前尚未有任何一种技术路径为绝对性方向,而是都处在探索阶段。“无论是聚合物、氧化物还是硫化物,目前很难有一种电池的所有性能都比别的电池有优势,而是各有优缺点。”广汽研发人员告诉虎嗅汽车。在广汽看来,未来固态电池的终极形态会是多元的复合体系,于是广汽全固态电池基于两条路线并行推进开发——一个是以硫化物为主的复合体系,另一个是聚合物为主的复合体系。宁德时代同样认为没有一种固态电解质是十全十美的,其更为看好硫化物技术路线,认为其能够更快走向量产。同样在硫化物全固态电池领域布局的还有丰田,但双方在硫化物空气稳定性和制造工艺上采用了不同的策略。全球各家厂商都希望攻克全固态电池,但目前尚未有真正实现量产攻坚的玩家。需要指出的是,虽然近年来行业内有部分车企宣称用上了固态电池,但实际上是半固态电池,而非并非真正的固态电池形态。“根据行业内规则,一般是按液态电解质占电芯的比重来分:液态(25wt%)、半固态(5—10wt%)、准固态(0—5wt%)和全固态(0wt%)。”广汽研发人员告诉虎嗅汽车,“不管是液态电池还是半固态电池,只要电池内部存在电解液,一旦破损泄漏都会有短路起火的风险,与当前常规液态锂离子电池并无本质差异。”固态电池,可望不可及固态电池百般好,但无奈这是块“饼”。较早一批从事固态电池研发的厂商已经在这条赛道上走了十多年,丰田从2012年开始布局研发,宁德时代也差不多在这一时期启动研究,但都没能将固态电池推到量产阶段。从国内外车企透露的量产时间点来看,固态电池的产业化时间大概在 2027-2030年。需要厘清的是,“上车不等于大规模量产”,推出产品形态到大规模量产落地之间还存在多方面的技术攻坚。“五年后肯定会有固态电池的车出来,再过三五年会大面积铺开。”吉利研究院专家告诉虎嗅汽车,但考虑到目前各家车企对固态电池的重视程度以及技术快速推进,量产时间可能提前。固态电池研发之难,连宁王都连声叫苦。曾毓群曾在公开场合表示,“宁德时代已经在这方面投资了10年,固态电池只有在使用新型化学材料、负极电极使用纯锂金属的情况下才会有很大优势,要将这种电池推向市场还有很多困难。”首先是电解质材料选择上,以相对主流的硫化物固态电解质需要的硫化锂为例,后者化学性质不稳定,与空气、水反应都会生成有毒化合物,生产环境控制要求严苛,量产困难,由于与目前的电池材料体系差别巨大,固态电池缺乏成熟的材料供应商。在正负极材料上,由于硅/碳负极体积易膨胀大不适用于固态电池,固态电池的正负极材料通常会选择一些能提高能量密度的金属,而锂金属负极现在还不成熟。在界面工程与稳定性上,固态电池中的电解质与正负极之间的界面问题也是一大挑战。由于采用固体电极和固体电解质,其有效接触能力较弱,会造成影响电池性能的界面阻抗。另外,由于固体电解质导电率差、采用锂金属易发生枝晶生长存在安全风险等问题,这些亟待攻关的技术难点。再者,对于量产和普及来说,全固态电池还面临着成本的问题,包括材料成本和制造成本。据中邮证券测算,目前固态电池较液态电池成本高出30%以上。材料层面,固态电解质目前仍难以做到轻薄化,用到的部分稀有金属原材料价格较高,叠加为高能量密度使用的高活性正负极材料尚未成熟,固态电解质和正负极成本都不低。在生产层面,固态电池的生产工艺相对复杂,成本也较高。可以预见,全固态电池短期内难以实现大规模的商业化。从理论层面来看,固态电池比液态电池有着多方面的优势,但这项被称为“动力电池领域的珠穆朗玛峰”的技术还仅是将来时形态,即使在三五年内能够有技术突破,但要形成替代,还需突破成本关口。从产业态度来看,未来10年无疑是全固态电池研发的关键机遇期。但对于一项新兴技术,更重要的是聚焦于技术层面的攻坚,而不是虚炒营销概念,将其作为宣传和推起资本热度的手段。...PC版:https://www.cnbeta.com.tw/articles/soft/1433557.htm手机版:https://m.cnbeta.com.tw/view/1433557.htm

封面图片

新型锂金属氯化物固态电解质设计可为电池行业带来变革

新型锂金属氯化物固态电解质设计可为电池行业带来变革固态电解质的必要性目前的商用电池亟需解决的一个问题是对液态电解质的依赖,而液态电解质存在易燃和爆炸的风险。因此,开发不可燃的固体电解质对于推动固态电池技术的发展至关重要。在全球向可持续交通转变的过程中,全世界都在加紧管制内燃机汽车并扩大电动汽车的使用,因此,对二次电池核心部件,尤其是固态电池的研究取得了显著的进展。金属离子(本例中为钇)在各层中的排列会影响离子导电性。为确保锂离子畅通无阻地移动,每层中占据可用位置的金属离子数量应少于0.444。此外,要在每一层中为锂离子创造足够宽的通道,金属离子的占有率应大于0.167。因此,每层内金属离子的占有率应介于0.167和0.444之间,这样才能形成具有高离子电导率的导电层。资料来源:基础科学研究所要使固态电池在日常使用中切实可行,关键是要开发出具有高离子导电性、强大的化学和电化学稳定性以及机械灵活性的材料。虽然之前的研究成功地开发出了具有高离子电导率的硫化物和氧化物基固体电解质,但这些材料都不能完全满足所有这些基本要求。氯化物基固体电解质的研究进展过去,科学家们也曾对氯化物基固体电解质进行过探索。氯化物基固体电解质以其卓越的离子导电性、机械柔韧性和高电压稳定性而著称。这些特性使一些人推测氯化物电池最有可能成为固态电池。然而,这些希望很快就破灭了,因为氯化物电池严重依赖昂贵的稀土金属(包括钇、钪和镧系元素)作为辅助成分,因此被认为是不切实际的。为了解决这些问题,IBS研究小组研究了金属离子在氯化物电解质中的分布。他们认为,三元氯化物电解质之所以能达到较低的离子电导率,是基于结构中金属离子排列的变化。他们首先在氯化锂钇(一种常见的氯化锂金属化合物)上测试了这一理论。当金属离子位于锂离子通路附近时,静电力会阻碍锂离子的移动。相反,如果金属离子的占有率过低,锂离子的移动路径就会变得过于狭窄,从而阻碍锂离子的移动。基于这些见解,研究小组引入了设计电解质的策略,以缓解这些相互冲突的因素,最终成功开发出一种具有高离子电导率的固体电解质。研究小组还进一步成功地展示了这一策略,创造出一种基于锆的锂金属氯化物固态电池,其成本远远低于采用稀土金属的变体。这是首次证明金属离子排列对材料离子导电性的重要影响。金属离子分布的影响这项研究揭示了金属离子分布在氯基固体电解质离子电导率中经常被忽视的作用。预计IBS中心的研究将为各种氯基固体电解质的开发铺平道路,并进一步推动固态电池的商业化,有望提高能源存储的经济性和安全性。通讯作者KangKisuk说:"这种新发现的氯化物基固体电解质有望突破传统硫化物和氧化物基固体电解质的限制,使我们离固态电池的广泛应用更近了一步。"...PC版:https://www.cnbeta.com.tw/articles/soft/1394587.htm手机版:https://m.cnbeta.com.tw/view/1394587.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人