加州理工学院科学家推出消除量子计算机错误的新方法

加州理工学院科学家推出消除量子计算机错误的新方法未来的量子计算机有望彻底改变各个领域的问题解决方式,例如创造可持续材料、开发新药物以及揭示基础物理学中的复杂问题。然而,这些开创性的量子系统目前比我们今天使用的经典计算机更容易出错。如果研究人员能拿出一块特殊的量子橡皮擦,把错误擦掉,岂不美哉?研究人员首次成功演示了"擦除"错误的识别和清除。据《自然》杂志报道,由加州理工学院领导的一组研究人员率先展示了一种量子橡皮擦。物理学家们证明,他们可以精确定位并纠正量子计算系统中被称为"擦除"错误的错误。这项新研究的共同第一作者、加州理工学院物理学教授曼努埃尔-恩德雷斯实验室的研究生亚当-肖说:"通常很难检测到量子计算机中的错误,因为仅仅是寻找错误的行为就会导致更多错误的发生。但我们的研究表明,通过一些细致的控制,我们可以精确定位并消除某些错误,而不会造成任何后果,这就是擦除这一名称的由来。"量子计算机基于亚原子领域的物理定律,例如纠缠,这是一种粒子在不直接接触的情况下保持相互连接和模仿的现象。在这项新研究中,研究人员重点研究了一种使用中性原子阵列或不带电原子的量子计算平台。具体来说,他们操纵了封闭在激光制成的"镊子"内的单个碱土中性原子。这些原子被激发至高能状态,即"雷德贝格"状态,在这种状态下,相邻原子开始相互作用。虽然量子设备中的错误通常很难被发现,但研究人员已经证明,只要小心控制,一些错误就能让原子发光。研究人员利用这种能力,使用原子阵列和激光束执行了一次量子模拟,如图所示。实验表明,他们可以摒弃发光的错误原子,使量子模拟运行得更有效率。图片来源:加州理工学院/兰斯-林田这项研究的另一位共同第一作者帕斯卡尔-烁尔(PascalScholl)解释说:"我们量子系统中的原子会彼此交谈并产生纠缠,"他曾是加州理工学院的博士后学者,现就职于法国一家名为PASQAL的量子计算公司。纠缠是量子计算机超越经典计算机的关键所在。"然而,自然界并不喜欢保持这种量子纠缠状态,"Scholl解释说。"最终,错误会发生,从而破坏整个量子态。这些纠缠态可以看作是装满苹果的篮子,原子就是苹果。随着时间的推移,一些苹果会开始腐烂,如果不把这些苹果从篮子里拿出来换成新鲜的,那么所有的苹果都会迅速腐烂。目前还不清楚如何才能完全防止这些错误的发生,因此,目前唯一可行的办法就是检测和纠正错误"。新的错误捕捉系统的设计方式是,错误的原子在受到激光照射时会发出荧光或发光。Scholl说:"我们有发光原子的图像,它们会告诉我们错误在哪里,因此我们可以将它们排除在最终统计之外,或者使用额外的激光脉冲来主动纠正它们。"在中性原子系统中实施擦除检测的理论最早是由普林斯顿大学电气与计算机工程教授杰夫-汤普森(JeffThompson)及其同事提出的。该团队最近还在《自然》(Nature)杂志上报告了该技术的演示。加州理工学院团队表示,通过消除和定位他们的雷德堡原子系统中的错误,他们可以提高纠缠的总体速率或保真度。在这项新研究中,研究小组发现,1000对原子中只有一对未能纠缠在一起。这比之前的结果提高了10倍,也是在这类系统中观察到的最高纠缠率。归根结底,这些结果对使用雷德贝格中性原子阵列的量子计算平台来说是个好兆头。中性原子是最具可扩展性的量子计算机类型,但直到现在它们才具有高纠缠保真度。参考文献:《高保真雷德堡量子模拟器中的擦除转换》,作者:PascalScholl、AdamL.Shaw、RichardBing-ShiunTsai、RanFinkelstein、JoonheeChoi和ManuelEndres,2023年10月11日,《自然》杂志。DOI:10.1038/s41586-023-06516-4编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1404799.htm手机版:https://m.cnbeta.com.tw/view/1404799.htm

相关推荐

封面图片

麻省理工学院长期教授、计算机科学家阿文德去世 享年77岁

麻省理工学院长期教授、计算机科学家阿文德去世享年77岁阿文德是一位多产的研究人员,曾领导计算机科学与人工智能实验室(CSAIL)的计算结构小组,在麻省理工学院任教近五十年。萨利-科恩布鲁斯(SallyKornbluth)校长今天在致麻省理工学院社区的一封信中写道:"他深受麻省理工学院社区和世界各地无数人的爱戴,他的智慧才华和对生活的热情激励着他们。"作为一名科学家,阿文德因其在数据流计算方面的重要贡献而闻名,数据流计算旨在优化数据流,以利用并行性,实现更快、更高效的计算。在过去的25年中,他的研究兴趣扩展到为微处理器和硬件加速器等复杂数字设备的形式建模、高级综合和形式验证开发技术和工具,以及并行计算架构和编程语言的内存模型和高速缓存一致性协议。认识阿文德的人都说他是一个罕见的人,他的兴趣和专长从高层次的理论形式系统一直到语言和编译器,再到硅硬件的门和结构。从减少数据中心所需的能源和空间,到简化更高效的多核计算机芯片设计,阿文德的研究成果应用广泛。"阿文德既是计算机体系结构和编程语言领域的杰出学者,也是一位兢兢业业的教师,他为我们的学生带来了系统级思维。他还是一位杰出的学术带头人,经常领导课程改革,并以有意义、有影响的方式为工程理事会做出贡献。"首席创新与战略官、工程学院院长、电气工程与计算机科学VannevarBush讲座教授AnanthaChandrakasan说:"我将非常怀念他的睿智建议。""阿文德的正能量和他爽朗的笑声照亮了许多人的生活。他为同事和几代学生提供了经久不衰的睿智建议。他致力于追求卓越的学术成就,不仅改变了计算机体系结构和并行计算方面的研究,还将这一承诺带到了他作为电子工程科学系计算机科学教研室主任的工作中。"麻省理工学院苏世民计算机学院院长、电气工程与计算机科学亨利-埃利斯-沃伦(HenryEllisWarren)教授DanHuttenlocher说:"他给我们所有有幸与他共事的人留下了持久的影响。"阿文德在坎普尔印度理工学院求学期间对并行计算产生了浓厚的兴趣,并于1969年获得该校学士学位。1972年和1973年,他分别获得明尼苏达大学计算机科学硕士和博士学位,研究操作系统和程序行为数学模型。1974年至1978年,他在加州大学欧文分校任教,之后加入麻省理工学院。在麻省理工学院,阿文德的小组研究并行计算和声明式编程语言,他领导开发了两种并行计算语言:Id和pH。20世纪90年代,他一直致力于这些编程语言的研究,并于2001年与合著者R.S.Nikhil出版了《pH中的隐式并行编程》一书,这是20多年研究的结晶。除研究工作外,阿文德还是EECS的重要学术带头人。他曾担任该系计算机科学教研室主任,在麻省理工学院苏世民计算机学院成立后,他在帮助EECS重组方面发挥了关键作用。"阿文德坚持不懈的积极态度、坚定不移的乐观主义、无边无际的慷慨和作为研究人员的非凡力量确实鼓舞人心,给所有有幸认识他的人留下了深刻的印记。我非常感谢他给我们的生活带来的光明,以及他对我们社区的根本性影响,"电气工程与计算机科学安德鲁和埃尔纳-维特比教授兼CSAIL主任DanielaRus说。他在数据流和并行计算方面的工作促成了20世纪80年代末和90年代初的季风项目。阿文德的小组与摩托罗拉公司合作,制造了16台数据流计算机器,并开发了相关软件。其中一台Monsoon数据流计算机现存于加利福尼亚州山景城的计算机历史博物馆。正如他在2012年接受电气和电子工程师学会(IEEE)采访时所解释的那样,20世纪90年代,并行计算研究资金开始枯竭,阿文德的工作重心随之转移。他回忆说:"微处理器的速度越来越快,人们认为不需要它了。"相反,他开始将其团队在并行编程中学习和开发的技术应用到数字硬件的原理设计中。除了指导麻省理工学院的学生和年轻同事,阿文德还为许多国家的大学和政府提供并行编程和半导体设计方面的研究咨询。基于他在数字硬件设计方面的工作,Arvind于2000年创立了Sandburst公司,这是一家无晶圆厂半导体芯片制造公司。Sandburst后来被博通收购。阿文德和他的学生们还开发了一种编程语言Bluespec,旨在实现芯片设计的自动化。在这项工作的基础上,他于2003年与他人共同创办了初创公司Bluespec,Inc.,致力于开发实用工具,帮助工程师简化设备设计。过去十年间,他致力于推动麻省理工学院的本科生教育,为6.004(计算结构)和6.191(深度学习导论)课程引入现代设计工具,并将与Bluespec密切相关的编程语言Minispec纳入其中。由于在数据流和多线程计算以及硬件高级合成工具开发方面做出的上述贡献和其他贡献,Arvind于2008年和2012年分别荣获美国国家工程院院士和美国艺术与科学院院士称号。他还被本科母校印度理工学院坎普尔分校评为杰出校友。"阿文德不仅是EECS社区的支柱和计算机科学的泰斗,他还是一位受人爱戴的同事和值得珍惜的朋友。我们这些有幸与Arvind共事和合作的人对他的突然离世感到悲痛欲绝。他的仁慈和幽默坚定不移;他的指导深思熟虑;他的指导是无价之宝。"麻省理工学院苏世民计算机学院副院长兼电子工程与电子技术系主任AsuOzdaglar说:"我们将深深地怀念他。"阿文德曾获得印度国家科学院院士、美国计算机协会和电气和电子工程师学会研究员等众多奖项,并于2012年获得电气和电子工程师学会颁发的哈里-H-古德纪念奖,该奖旨在表彰对信息处理领域的理论或实践做出的重大贡献。阿文德是一位谦逊的科学家,他首先指出,这些成就的取得离不开他杰出而出色的合作者。这些合作者中最重要的是他有幸在麻省理工学院共事过的本科生和研究生。据他的家人说,他与这些学生在专业和个人方面都保持着良好的关系,他把这些关系看得比他们一起完成的工作更重要。在2012年接受IEEE采访时,阿文德这样总结他在科学上取得成功的关键:"真的,一个人必须做自己相信的事情。我认为,我们大多数人的工作水平,如果你每天都不乐在其中,是无法持续的。你不能只为结果而工作。你必须努力工作,因为你会说,'我必须知道这个问题的答案',"他说。他的妻子GitaSinghMithal、两个儿子Divakar'01和Prabhakar'04、他们的妻子Leena和Nisha以及两个孙子Maya和Vikram均健在。...PC版:https://www.cnbeta.com.tw/articles/soft/1435388.htm手机版:https://m.cnbeta.com.tw/view/1435388.htm

封面图片

量子计算机在适当的错误控制下更擅长猜测

量子计算机在适当的错误控制下更擅长猜测科学家们通过有效抑制位串猜谜游戏中的错误,管理长达26位的字符串,实现了量子加速。他们表明,通过适当的错误控制,即使在当前嘈杂的量子计算时代,量子计算机也能以比传统计算机更好的时间尺度执行完整算法。通过有效地减少在这个级别经常遇到的错误,他们成功地管理了长达26位的位串,比以前可能的要大得多。(对于上下文,一位指的是二进制数,可以是零或一)。量子计算机有望解决某些问题,其优势会随着问题复杂性的增加而增加。但是,它们也极易出错或产生噪音。Lidar表示,挑战在于“在当今量子计算机仍然‘嘈杂’的现实世界中获得优势。”当前量子计算的这种容易产生噪声的条件被称为“NISQ”(噪声中级量子)时代,该术语改编自用于描述经典计算设备的RISC架构。因此,任何现有的量子速度优势证明都需要降噪。一个问题的未知变量越多,计算机通常就越难解决。学者们可以通过玩一种游戏来评估计算机的性能,以了解算法猜测隐藏信息的速度有多快。例如,想象一下电视游戏Jeopardy的一个版本,参赛者轮流猜测一个已知长度的秘密单词,一次一个完整的单词。在随机更改秘密单词之前,主持人只为每个猜出的单词显示一个正确的字母。在他们的研究中,研究人员用位串替换了单词。一台经典计算机平均需要大约3300万次猜测才能正确识别26位字符串。相比之下,一台功能完美的量子计算机,在量子叠加中提出猜测,只需一次猜测就可以确定正确答案。这种效率来自运行25多年前由计算机科学家EthanBernstein和UmeshVazirani开发的量子算法。然而,噪声会显着阻碍这种指数量子优势。激光雷达和Pokharel通过采用称为动态去耦的噪声抑制技术实现了量子加速。他们花了一年的时间进行实验,Pokharel在USC的激光雷达下担任博士生。最初,应用动态解耦似乎会降低性能。然而,经过多次改进后,量子算法按预期运行。解决问题的时间比任何经典计算机都慢,随着问题变得越来越复杂,量子优势变得越来越明显。激光雷达指出,“目前,经典计算机仍然可以绝对地更快地解决问题。”换句话说,报告的优势是根据找到解决方案所需的时间尺度而不是绝对时间来衡量的。这意味着对于足够长的位串,量子解决方案最终会更快。该研究最终表明,通过适当的错误控制,即使在NISQ时代,量子计算机也可以执行完整的算法,并且比传统计算机更能缩短寻找解决方案所需的时间。...PC版:https://www.cnbeta.com.tw/articles/soft/1364371.htm手机版:https://m.cnbeta.com.tw/view/1364371.htm

封面图片

IBM计算机“基准”实验显示量子计算机将在两年内超越传统计算机

IBM计算机“基准”实验显示量子计算机将在两年内超越传统计算机这项新研究的成果发表在上周的《自然》杂志上。科学家们使用IBM量子计算机Eagle来模拟真实材料的磁性,处理速度比传统计算机更快。IBM量子计算机之所以能超越传统计算机,是因为其使用了一种特殊的误差缓解过程来补偿噪声带来的影响。而噪声正是量子计算机的一个基本弱点。基于硅芯片的传统计算机依赖于“比特(bit)”进行运算,但其只能取0或1这两个值。相比之下,量子计算机使用的量子比特可以同时呈现多种状态。量子比特依赖于量子叠加和量子纠缠等量子现象。理论上这使得量子比特的计算速度更快,而且可以真正实现并行计算。相比之下,传统计算机基于比特的计算速度很慢,而且需要按顺序依次进行。但从历史上看,量子计算机有一个致命的弱点:量子比特的量子态非常脆弱,来自外部环境的微小破坏也会永远扰乱它们的状态,从而干扰所携带的信息。这使得量子计算机非常容易出错或“出现噪声”。在这一新的原理验证实验中,127量子比特的Eagle超级计算机用建立在超导电路上的量子比特计算了二维固体的完整磁性状态。然后,研究人员仔细测量每个量子比特所产生的噪声。事实证明,诸如超级计算材料中的缺陷等因素可以可靠预测每个量子比特所产生的噪声。据报道,研究小组随后利用这些预测值来模拟生成没有噪音的结果。量子霸权的说法之前就出现过。2019年,谷歌的科学家们声称,公司开发的量子计算机Sycamore在200秒内解决了一个普通计算机需要1万年才能破解的问题。但谷歌量子计算机所解决的问题本质上就是生成一长串随机数,然后检查它们的准确性,并没有什么实际用途。相比之下,用IBM量子计算机完成的新实验是一个高度简化但有真实应用价值的物理问题。2019年谷歌量子霸权研究成果参与者之一、加州大学圣巴巴拉分校物理学家约翰·马丁尼斯(JohnMartinis)表示,“这能让人们乐观认为,它将在其他系统和更复杂的算法中发挥作用。”(辰辰)...PC版:https://www.cnbeta.com.tw/articles/soft/1366285.htm手机版:https://m.cnbeta.com.tw/view/1366285.htm

封面图片

微软量子计算机运行 14000 次实验无差错

微软量子计算机运行14000次实验无差错量子计算机制造商Quantinuum的工程师团队与微软公司的计算机科学家合作,找到了一种在量子计算机上运行实验时大大减少错误的方法。在这项新研究中,Quantinuum提供H2计算机(基于离子陷阱量子比特),微软负责提供逻辑量子比特软件。他们共同使用30个物理量子比特创建了4个逻辑量子比特。该软件可在计算时诊断并纠正错误,而不会通过其主动伴随式提取技术破坏逻辑量子比特。

封面图片

基于中性镱原子的擦除转换方案 极大地增强了量子计算机的纠错能力

基于中性镱原子的擦除转换方案极大地增强了量子计算机的纠错能力在2022年8月9日发表于《自然通讯》期刊上的一篇文章中,由普林斯顿大学的电气与计算机工程副教授JeffThompson带领的一支研究团队,详细介绍了一种可让量子计算机更有效纠错的新方法。据悉,尽管量子计算机具有化解传统计算机难以搞定的复杂问题的巨大潜力,但要求极高的敏感运行条件,也成为了影响量子计算机普及的一大阻碍。PC版:https://www.cnbeta.com/articles/soft/1321375.htm手机版:https://m.cnbeta.com/view/1321375.htm

封面图片

谷歌科学家发布:量子计算机取得重大突破

谷歌科学家发布:量子计算机取得重大突破谷歌科学家最近在ArXiv平台上发布了一篇预印本论文,声称在量子计算机领域取得了重大突破。他们表示,通过对Sycamore处理器的升级,谷歌成功提升了量子位的数量,从之前的53个增加到了70个。这次实验中,谷歌科学家们执行了一项名为随机电路采样的任务,这个任务在量子计算中用于评估计算机的性能和效率。通过运行随机电路并分析结果输出,科学家们测试了量子计算机在解决复杂问题方面的能力。谷歌的研究结果显示,升级后的70个量子位的Sycamore处理器在执行随机电路采样任务上比业内最先进的超级计算机快了几十亿倍。例如,需要业内最先进超级计算机Frontier计算47.2年才能完成的任务,53个量子位的Sycamore处理器只需要6.18秒就能完成,而新版的70个量子位的Sycamore处理器速度更快。来源,,来自:雷锋频道:@kejiqu群组:@kejiquchat投稿:@kejiqubot

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人