窥探远古生命:考古学家从35亿年前的生物质中发现新线索

窥探远古生命:考古学家从35亿年前的生物质中发现新线索西澳大利亚皮尔巴拉克拉通的硫酸钡岩石(称为重晶石岩)。图片来源:GerhardHundertmark哥廷根大学领导的一个研究小组现在发现了有关这种古老生物质的形成和组成的新线索,为了解地球上最早的生态系统提供了线索。研究成果发表在《前寒武纪研究》(PrecambrianResearch)杂志上。裸露在地表的皮尔巴拉克拉通岩石:底部为灰色重晶石岩,顶部为因氧化而呈红色的叠层石。图片来源:Jan-PeterDuda研究人员利用核磁共振光谱(NMR)和近边X射线吸收精细结构(NEXAFS)等高分辨率技术,分析了在硫酸钡岩石中发现的碳质颗粒。这使科学家们获得了有关微观小颗粒结构的重要信息,并证明了这些颗粒来源于生物。这些颗粒很可能是作为沉积物沉积在"火山口"(火山活动后形成的大锅状空洞)的水体中。此外,一些颗粒肯定是被火山表面下的热液水搬运和改变的。这表明沉积物沉积的历史很动荡。通过分析各种碳同位素,研究人员得出结论,当时火山活动附近已经生活着不同类型的微生物,类似于今天在冰岛间歇泉或黄石国家公园温泉中发现的微生物。位于皮尔巴拉克拉通"德雷斯勒地层"的重晶石采石场。这些岩石距今约350万年,含有微生物生命的证据。图片来源:Jan-PeterDuda这项研究不仅揭示了地球的过去,而且从方法论的角度来看也很有趣。第一作者、哥廷根大学地球科学中心的莱娜-魏曼(LenaWeimann)解释说:"能够将一系列高分辨率技术结合起来,使我们能够获得有关有机颗粒沉积历史及其起源的信息,这非常令人兴奋。我们的研究结果表明,即使在年代极为久远的材料中,仍然可以找到最初生物的原始痕迹。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1420573.htm手机版:https://m.cnbeta.com.tw/view/1420573.htm

相关推荐

封面图片

科学家发现复杂生命起源的新线索:我们都是阿斯加德人

科学家发现复杂生命起源的新线索:我们都是阿斯加德人用生物进化论者的话来说,这意味着真核生物是阿斯加德古菌中的一个"嵌套良好的支系",就像鸟类是恐龙这个更大群体中的几个族群之一,有着共同的祖先一样。研究小组发现,在阿斯加德古菌中,所有真核生物都有一个共同的祖先。根据这项最新研究,所有复杂生命形式(又称真核生物)的根源都可以追溯到一群名为阿斯加德古菌的微生物的共同祖先。资料来源:德克萨斯大学奥斯汀分校在距今约20亿年之前,还没有发现真核生物的化石,这表明在此之前,只有各种类型的微生物存在。UT奥斯汀分校综合生物学和海洋科学副教授布雷特-贝克(BrettBaker)说:"那么,是什么事件导致微生物进化成真核生物呢?这是一个大问题。拥有这个共同的祖先是理解这个问题的一大步。"在荷兰瓦赫宁根大学ThijsEttema的领导下,研究小组确定了生命树上与所有复杂生命形式最亲近的微生物,即新描述的Hodarchaeales(简称Hods)。Hods发现于海洋沉积物中,是更大的阿斯加德古菌群中的几个亚群之一。阿斯加德古菌进化于20多亿年前,它们的后代现在仍然活着。其中一些已在世界各地的深海沉积物和温泉中被发现,但迄今为止,只有两个菌株能在实验室中成功培育。为了识别它们,科学家从环境中收集它们的遗传物质,然后拼凑它们的基因组。根据与其他可在实验室培育和研究的生物的基因相似性,科学家们可以推断出阿斯加德人的新陈代谢和其他特征。贝克实验室的研究员瓦莱丽-德-安达(ValerieDeAnda)说:"想象一下一台时光机,不是去探索恐龙或古代文明的领域,而是深入到可能引发复杂生命曙光的潜在代谢反应中去。我们研究的不是化石或古代文物,而是现代微生物的基因蓝图,以重建它们的过去。"这项研究分析的部分微生物是利用阿尔文号深海潜水器采集的,图为2018年11月在瓜伊马斯盆地的采集之旅。图片来源:BrettBaker研究人员扩大了已知的阿斯加德基因组多样性,增加了50多个未被描述的阿斯加德基因组作为建模输入。他们的分析表明,所有现代阿斯加德人的祖先似乎都生活在炎热的环境中,以消耗二氧化碳和化学物质为生。与此同时,与真核生物亲缘关系更近的霍奇菌在新陈代谢方面与我们更相似,它们吃碳并生活在更凉爽的环境中。德安达说:"这真是令人兴奋,因为我们第一次看到了产生第一批真核细胞的祖先的分子蓝图。"在北欧神话中,霍德(Hod,也可拼写为Höd、Höðr或Hoder)是一个神,是奥丁(Odin)和弗里格(Frigg)的盲儿子,他被骗杀死了自己的亲兄弟鲍德尔(Baldr)。贝克说:"我在演讲中一直开玩笑说'我们都是阿斯加德人'。现在这句话很可能会出现在我的墓碑上。""对我来说,最令人兴奋的事情是,我们开始看到从生物学家认为的古细菌向更像真核生物的Hodarchaeales过渡。另一种说法是,这些Hods是我们在古生物世界中的姊妹群。"贝克说,在所有古细菌中,阿斯加德人是产生真核生物的,这是有道理的。与真核生物一样,阿斯加德古菌成员的基因组中也有许多具有多个拷贝的基因。在真核生物中,当基因发生复制时,新的拷贝往往具有新的功能,赋予生物新的能力。这是进化的主要驱动力之一。"我们不知道这些阿斯加德人的基因复制具体导致了什么。但我们知道,在真核生物中,基因复制导致了新的功能和细胞复杂性的增加。因此,我们认为这也是阿斯加德导致真核生物创新的方式之一。"研究古菌的科学家发现了许多曾被认为是真核生物独有的蛋白质。这就提出了一个问题:这些真核蛋白质在古细菌中发挥着什么功能?贝克说:"我认为,研究这些更简单的生命形式和它们的真核特征,会让我们对自己有很多了解。"...PC版:https://www.cnbeta.com.tw/articles/soft/1373755.htm手机版:https://m.cnbeta.com.tw/view/1373755.htm

封面图片

考古学家绘制鳄鱼源自远古掠食者的进化之路

考古学家绘制鳄鱼源自远古掠食者的进化之路约克大学的研究人员绘制了鳄鱼的进化史,揭示了气候变化、竞争和生态因素对鳄鱼目前有限的多样性的影响,为保护工作提供了重要的启示。今天(12月4日)发表在《自然-生态学与进化》(NatureEcology&Evolution)杂志上的这项研究发现,当全球气温升高时,鳄鱼的海栖和陆栖近亲的物种数量增加,而与鲨鱼、海洋爬行动物或恐龙争夺资源的竞争加剧,很可能导致它们的灭绝。相比之下,鳄鱼在淡水中生活的近亲没有受到气温变化的影响,但海平面上升却使它们面临最大的灭绝风险。来自被称为波波龙超科(Poposauroidea)的鳄鱼已灭绝亲缘种群。这种鳄鱼长约四米,在2.37亿年前至2.013亿年前与恐龙生活在一起。图片来源:JaggedFangDesigns随着气候的不断变化,有七种鳄鱼被列为极度濒危物种,另有四种被确定为易危物种,这项研究的发现为鳄鱼和其他物种的保护工作提供了重要的启示。该研究的资深作者、约克大学生物学系的凯蒂-戴维斯博士说:"化石记录是宝贵信息的丰富来源,它让我们能够穿越时间的长河,回顾物种起源的方式和原因,更重要的是,它们灭绝的原因是什么。通过研究化石记录并将其与鳄鱼家族树进行映射,我们的研究揭示了当我们试图预测物种如何应对当今的气候变化时,生态学的思考是多么重要。""有上百万动植物物种濒临灭绝,了解物种消失背后的关键因素比以往任何时候都更加重要。就鳄鱼而言,许多物种栖息在低洼地区,这意味着与全球变暖相关的海平面上升可能会不可逆转地改变它们赖以生存的栖息地"。"鳄鱼和鸟类与恐龙有着共同的遗产,它们与翼龙一起组成了一个被称为"主龙类"或"统治爬行动物"的类群,其历史可以追溯到早三叠世。伪鳄类是主龙类爬行动物的一个类群,被定义为与鳄鱼的亲缘关系比与鸟类的亲缘关系更近的所有物种。在这项研究中,研究人员为所有鳄鱼及其已灭绝的近亲建立了一个庞大的系统发育关系(就像一棵家谱),从而可以绘制出有多少新物种正在形成,又有多少物种正在灭绝。然后,他们将这些数据与过去的气候变化数据(尤其是温度和海平面)结合起来,评估物种的出现和灭绝是否与气候变化有关。研究人员还探讨了物种之间的相互作用(例如竞争)是否可能起到作用,因此他们计算了任何时间点的物种数量估计值,并利用一种名为"信息论"的数学方法,将这些估计值与新物种和物种灭绝情况进行比较。这样,科学家们就能估算出气候变化和物种相互作用是否对新物种的出现或灭绝产生了直接影响。戴维斯博士补充说:"鳄鱼及其已灭绝的近亲为我们了解气候变化及其在过去、现在和未来对生物多样性的影响提供了独特的视角。我们的研究结果促进了我们对哪些因素已经并将继续塑造地球生命的理解。"...PC版:https://www.cnbeta.com.tw/articles/soft/1401959.htm手机版:https://m.cnbeta.com.tw/view/1401959.htm

封面图片

考古学家在熔岩洞穴中发现古人类活动的证据

考古学家在熔岩洞穴中发现古人类活动的证据最近在阿拉伯进行的考古研究通过对洞穴和熔岩管的研究,揭示了该地区历史和文化演变的重要线索,突出了阿拉伯考古遗产的古代生活方式和全球意义。资料来源:绿色阿拉伯项目由格里菲斯大学澳大利亚人类进化研究中心(ARCHE)牵头,与国际合作伙伴合作取得的突破之一,就是对包括洞穴和熔岩管在内的地下环境进行勘探。通过细致的发掘和分析,研究人员在乌姆吉桑发现了从新石器时代到旧石器/青铜时代(约10000-3500年前)的大量证据。"我们在乌姆吉尔桑的发现为了解阿拉伯古代人的生活提供了难得的一瞥,揭示了人类占领的重复阶段,并阐明了曾经在这片土地上繁荣发展的畜牧业活动,"首席研究员、阿尔赫研究中心研究员马修-斯图尔特(MathewStewart)博士说。"该遗址很可能是畜牧路线上的一个重要中转站,连接着重要的绿洲,促进了文化交流和贸易。"岩画和动物记录证明了牧民对熔岩管和周边地区的使用,生动地描绘了古代的生活方式。对牛、绵羊、山羊和狗的描绘证实了该地区史前的畜牧活动和畜群构成。对动物遗骸的同位素分析表明,牲畜主要以野草和灌木为食,而人类则以富含蛋白质的食物为主,随着时间的推移,C3植物的食用量明显增加,这表明绿洲农业的出现。"虽然地下地点在考古学和第四纪科学方面具有全球意义,但我们的研究是沙特阿拉伯首次开展此类综合研究,"阿尔歇研究中心主任迈克尔-佩特拉利亚教授补充道。"这些发现强调了在洞穴和熔岩管道中进行跨学科调查的巨大潜力,为了解阿拉伯的古代历史提供了一个独特的窗口。"乌姆吉尔桑的研究强调了考古调查采用多学科合作方法的重要性,并突出了阿拉伯考古遗产在全球舞台上的重要意义。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1429985.htm手机版:https://m.cnbeta.com.tw/view/1429985.htm

封面图片

NASA好奇号漫游车发现远古火星上存在类似地球环境的迹象

NASA好奇号漫游车发现远古火星上存在类似地球环境的迹象美国宇航局的"好奇号"漫游车继续寻找火星盖尔陨石坑条件可能支持微生物生命的迹象。图片来源:NASA/JPL-Caltech/MSSS洛斯阿拉莫斯国家实验室空间科学与应用小组的帕特里克-加斯达(PatrickGasda)是这项研究的第一作者,他说:"氧化锰很难在火星表面形成,所以我们没想到会在海岸线沉积物中发现如此高浓度的氧化锰。"在地球上,这类沉积物经常出现,因为大气中的高氧是由光合生命以及帮助催化锰氧化反应的微生物产生的。"在火星上,我们没有生命存在的证据,火星古老大气中产生氧气的机制也不清楚,因此氧化锰是如何形成并集中在这里的确实令人费解。"加斯达补充说:"这些发现表明火星大气或地表水中存在更大的过程,也表明需要做更多的工作来了解火星上的氧化作用。"ChemCam由洛斯阿拉莫斯公司和法国国家空间研究中心(CNES)共同开发,它利用激光在岩石表面形成等离子体,然后收集光线,以量化岩石中的元素成分。漫游车探索的沉积岩由沙、淤泥和泥混合而成,与构成盖尔陨石坑大部分湖床岩石的泥质相比,沙质岩石的孔隙更大,地下水更容易通过沙质岩石。研究小组研究了锰如何在这些砂岩中富集--例如,地下水渗过湖岸或三角洲口的砂岩--以及哪种氧化剂可能导致岩石中锰的沉淀。在地球上,由于大气中的氧气,锰会变得富集,而微生物的存在往往会加速这一过程。地球上的微生物可以利用锰的多种氧化态作为新陈代谢的能量;如果远古火星上有生命存在,那么湖岸边这些岩石中增加的锰含量就会成为生命的有用能源。ChemCam仪器的首席研究员尼娜-兰扎(NinaLanza)说:"这些古老岩石所揭示的盖尔湖环境,为我们提供了一个了解宜居环境的窗口,它看起来与今天地球上的地方惊人地相似。锰矿物在地球上湖岸的浅层含氧水域中很常见,在古老的火星上发现这种可识别的特征非常了不起"。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1429625.htm手机版:https://m.cnbeta.com.tw/view/1429625.htm

封面图片

科学家利用废矿作为实验室 绘制广阔的地表下微生物世界地图

科学家利用废矿作为实验室绘制广阔的地表下微生物世界地图MagdalenaOsburn教授在八月份的一次现场考察中取出一个样本。图片来源:桑福德地下研究设施研究人员总共描述了近600个微生物基因组的特征,其中一些是科学界的新发现。在这批微生物中,领导这项研究的西北大学地球科学家马格达莱纳-奥斯本(MagdalenaOsburn)说,大多数微生物可分为两类:它们是"极简主义者"和"极致主义者"。"极简主义者"简化了它们的生活,每天都吃同样的东西;而"极致主义者"则随时准备贪婪地攫取任何可能出现的资源。这项研究最近发表在《环境微生物学》杂志上。桑福德地下研究设施的前金矿外景。资料来源:桑福德地下研究设施这项新研究不仅扩展了我们对生活在地下深处的微生物的了解,还暗示了我们有一天可能在火星上发现的潜在生命。由于微生物依靠岩石和水内的资源生存,而这些资源与地表是物理分离的,因此这些生物也有可能在火星尘土飞扬的红色深处生存。西北大学温伯格艺术与科学学院地球与行星科学副教授奥斯本说:"地表下的深层生物圈是巨大的;这是一个广阔的空间。我们利用矿井作为进入生物圈的通道,无论如何接近生物圈都很困难。这项研究的强大之处在于,我们最终获得了大量基因组,其中许多来自研究不足的群体。通过这些DNA,我们可以了解哪些生物生活在地下,并了解它们可能在做什么。这些生物通常无法在实验室中生长,也无法在更传统的环境中进行研究。它们通常被称为'微生物暗物质',因为我们对它们知之甚少。"进入地壳的入口在过去的10年中,奥斯本和她的学生们定期前往位于南达科他州利德市的前霍姆斯泰克矿山(HomestakeMine),收集地球化学和微生物样本。现在,这个地下深处的实验室被称为桑福德地下研究设施(SURF),主持了一系列跨学科的研究实验。2015年,奥斯本在整个SURF建立了六个实验点,统称为"深矿微生物观测站"。"矿井现在是一个专门用于地下科学的设施,"奥斯本说。"研究人员主要进行高能粒子物理实验。但他们也让我们研究生活在岩石中的深层生物圈。我们可以在一个受控的专用场所进行实验,并在几个月后对其进行检查,这在活跃的矿井中是做不到的。"通过在矿井内的岩石上钻孔,奥斯本和她的团队可以捕捉到由水和溶解气体组成的断裂流体。其中一些流体的历史可长达1万年,其中蕴藏着大量微生物生命,而这些微生物生命在其他情况下都是与世隔绝、被忽视的。在这项新研究中,奥斯本和她的团队收集了8份流体样本,这些样本采集于整个矿井的不同位置,深度从地表一直到约1.5千米深处。这些样本提供了一个窗口,让人们了解微生物生命随深度变化的梯度。"极简主义者"和"极致主义者"回到奥斯本在西北大学的实验室后,她和她的团队对样本中的微生物DNA进行了测序。在近600个基因组中,微生物代表了50个不同的门和18个候选门。在这个多样化的微生物群落中,奥斯本发现,在某些时候,每个品系都会趋向于一种决定生命的轨迹:成为极简主义者或极致主义者。奥斯本说:"我们发现,许多微生物要么是极简主义者:超流线型,只有一项工作做得非常好,与合作者紧密团结;要么就是什么都能做一点。这些"极致主义者"随时准备好利用出现的每一种资源。如果有机会制造一些能量或转化生物分子,它就会做好准备。通过观察它的基因组,我们可以知道它有很多选择。如果营养物质匮乏,它可以自己制造。"玛格达莱纳-奥斯本教授收集由水和溶解气体组成的断裂流体。图片来源:桑福德地下研究设施奥斯本解释说,极简主义者通常与朋友共享资源,这些朋友也有专门的工作:"其中一些菌系甚至没有制造自身脂质的基因,这让我大吃一惊。没有脂质怎么能制造细胞呢?这就有点像人类无法制造每一种氨基酸,所以我们吃蛋白质来获得我们自己无法制造的氨基酸。但这是更极端的情况。极简主义者是极端的专家,他们齐心协力,使其发挥作用。这是一种共享,没有重复劳动"。对地球和地球以外的启示奥斯本说,当我们想象地球以外的生命时,这些地下微生物可能会为其他地方可能存在的生命提供线索。她说:"当我看到微生物生命的证据时,我真的很兴奋,它们在没有我们、没有植物、没有氧气、没有地表大气的情况下做着自己的事情。这些生命很可能就存在于火星深处或冰冷卫星的海洋中。这些生命形式告诉我们太阳系其他地方可能存在什么。而且,它们对我们自己的星球也有影响。例如,随着工业界寻找长期碳储存的地点,许多公司正在探索将二氧化碳注入地下深处的可能性。"在我们探索这些方案时,奥斯本提醒我们不要忘记微生物。她说:"我们需要认识到深层地下的生命,以及人类活动(如采矿和碳储存)可能对其产生的影响。如果我们将二氧化碳封存在地下,就会有微生物将其代谢为甲烷。地下有一个生物圈,根据对它的扰动,有可能对地表产生影响"。"...PC版:https://www.cnbeta.com.tw/articles/soft/1401433.htm手机版:https://m.cnbeta.com.tw/view/1401433.htm

封面图片

揭开微生物暗物质的秘密:神秘的棒状杆菌世界

揭开微生物暗物质的秘密:神秘的棒状杆菌世界扫描电子显微照片显示,紫色的小棒状杆菌细胞生长在大得多的细胞表面。西雅图华大医学中心约瑟夫-穆格斯(JosephMougous)实验室领导的新研究揭示了它们的生命周期、基因,以及它们不同寻常的生活方式背后的一些分子机制。这些附生细菌是Southlakiaepibionticum。图片来源:YaxiWang、WaiPangChan和ScottBraswell/华盛顿大学研究人员能在实验室培养的少数几种棒状杆菌寄生在另一种更大的宿主微生物的细胞表面。一般来说,棒状杆菌缺乏制造许多生命必需分子所需的基因,如构成蛋白质的氨基酸、形成膜的脂肪酸和DNA中的核苷酸。研究人员由此推测,许多无脊椎动物依靠其他细菌生长。在最近发表于《细胞》(Cell)的一项研究中,研究人员首次揭示了不同寻常的棒状杆菌生活方式背后的分子机制。这一突破得益于对这些细菌进行基因操纵的方法的发现,这一进展为可能的新研究方向开辟了一片天地。西雅图系统生物学研究所的尼廷-S-巴利加(NitinS.Baliga)说:"虽然元基因组学可以告诉我们哪些微生物生活在我们的身体上和身体内,但仅凭DNA序列并不能让我们深入了解它们的有益或有害活动,特别是对于那些以前从未被表征过的生物。"表生细菌研究员拉里-A-加拉格尔(LarryA.Gallagher)在华盛顿大学医学院微生物实验室的显微镜前。图片来源:S.BrookPeterson/华盛顿大学他补充说:"从基因上扰乱棒状杆菌的能力为应用强大的系统分析透镜来快速描述强制性附生生物的独特生物学特性提供了可能性。"这项研究背后的团队由华盛顿大学医学院微生物学系约瑟夫-穆格斯(JosephMougous)实验室和霍华德-休斯医学研究所(HowardHughesMedicalInstitute)领导。它们是许多不为人知的细菌之一,其DNA序列出现在对从环境来源的物种丰富的微生物群落中发现的基因组进行的大规模遗传分析中。这种遗传物质被称为"微生物暗物质",因为人们对其编码的功能知之甚少。《细胞》杂志的论文指出,微生物暗物质可能含有潜在生物技术应用的生化途径信息。它还为支持微生物生态系统的分子活动以及该系统中聚集的各种微生物物种的细胞生物学提供了线索。在这项最新研究中分析的棒状杆菌属于糖杆菌(Saccharibacteria)。它们生活在各种陆地和水域环境中,但以栖息在人类口腔中最为著名。至少从中石器时代开始,它们就是人类口腔微生物群的一部分,并与人类口腔健康有关。在人的口腔中,糖杆菌需要放线菌的陪伴,放线菌是它们的宿主。为了更好地了解酵母菌与宿主的关系机制,研究人员利用基因操作来确定酵母菌生长所必需的所有基因。西雅图华盛顿大学医学院微生物实验室厌氧工作站,附生细菌研究员王雅茜。图片来源:S.BrookPeterson/华盛顿大学微生物学教授穆格斯(Mougous)说:"能够初步了解这些细菌所携带的不寻常基因的功能,我们感到非常兴奋。通过今后对这些基因的重点研究,我们希望能揭开糖细菌如何利用宿主细菌生长的神秘面纱"。研究中发现的可能的宿主相互作用因素包括可能帮助糖杆菌附着在宿主细胞上的细胞表面结构,以及可能用于运输营养物质的专门分泌系统。作者工作的另一项应用是生成了表达荧光蛋白的酵母菌细胞。利用这些细胞,研究人员对糖杆菌与宿主细菌一起生长的情况进行了延时显微荧光成像。穆格斯实验室的资深科学家布鲁克-彼得森(S.BrookPeterson)指出:"对糖杆菌-宿主细胞培养物的延时成像揭示了这些不寻常细菌生命周期的惊人复杂性。"研究人员报告说,一些酵母菌作为母细胞,粘附在宿主细胞上,反复出芽,产生小的后代。这些小家伙继续寻找新的宿主细胞。一些后代反过来成为了母细胞,而另一些则似乎与宿主进行着无益的互动。研究人员认为,更多的遗传操作研究将为更广泛地了解他们所描述的"这些生物体所蕴含的丰富的微生物暗物质储备"的作用打开一扇大门,并有可能发现尚未想象到的生物机制。...PC版:https://www.cnbeta.com.tw/articles/soft/1382839.htm手机版:https://m.cnbeta.com.tw/view/1382839.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人