麻省理工学院的微观超材料可抵御超音速撞击

麻省理工学院的微观超材料可抵御超音速撞击这就是麻省理工学院工程师在微观超材料实验中的发现--这些材料是有意打印、组装或以其他方式设计的,其微观结构赋予了材料整体特殊的性能。在最近发表在《美国国家科学院院刊》上的一项研究中,工程师们报告了一种快速测试超材料结构阵列及其对超音速撞击的适应性的新方法。通过以超音速发射微粒子,麻省理工学院的工程师们可以测试各种超材料的弹性,这些超材料是由小到一个红血球的结构制成的。图为微粒子撞击超材料结构的四段视频截图。图片来源:研究人员提供在实验中,研究小组将印刷好的微小超材料晶格悬挂在微观支撑结构之间,然后以超音速向材料发射更微小的粒子。然后,研究小组利用高速摄像机以纳秒级的精度捕捉每次撞击及其后果的图像。他们的研究发现了一些超材料结构,与完全固态、非结构化的同类材料相比,它们更能抵御超音速撞击。研究人员说,他们在微观层面观察到的结果可以推广到类似的宏观冲击,从而预测新材料结构在不同长度尺度上如何抵御现实世界中的冲击。研究人员打印出错综复杂的蜂窝状材料,悬浮在相同材料的支撑柱之间(如图)。这种微观结构的高度相当于人类三根头发的宽度。图片来源:研究人员提供"我们正在学习的是,材料的微观结构很重要,即使在高速变形的情况下也是如此,"研究报告的作者、麻省理工学院机械工程系教授卡洛斯-波特拉(CarlosPortela)说。"我们希望找出抗冲击结构,将其制成涂层或面板,用于航天器、车辆、头盔以及任何需要轻质和保护的物体。"该研究的其他作者包括第一作者、麻省理工学院研究生托马斯-布特鲁伊尔(ThomasButruille)和DEVCOM陆军研究实验室的约书亚-克龙(JoshuaCrone)。纯粹的影响团队的新高速实验建立在之前工作的基础上,工程师们在实验中测试了一种超轻碳基材料的韧性。这种材料比人的头发丝还细,由微小的碳支柱和碳束制成,研究小组打印了这些碳支柱和碳束,并将其放置在玻璃载玻片上。然后,他们以超过音速的速度向材料发射微粒子。这些超音速实验表明,微结构材料能够承受高速撞击,有时能使微粒子偏转,有时则能捕获它们。Portela说:"但有许多问题我们无法回答,因为我们是在基底上测试材料,这可能会影响它们的行为。"麻省理工学院的工程师们捕捉到了微粒子通过精确设计的超材料发射的视频,其测量厚度比人的头发丝还细。图片来源:研究人员提供在他们的新研究中,研究人员开发了一种测试独立超材料的方法,以观察材料在没有背衬或支撑基底的情况下,自身如何承受撞击。在目前的设置中,研究人员将感兴趣的超材料悬挂在两根由相同基础材料制成的微型支柱之间。根据被测试超材料的尺寸,研究人员计算出两根支柱必须相距多远,才能在两端支撑材料,同时让材料对任何冲击做出反应,而不受支柱本身的影响,这样就能确保我们测量的是材料特性,而不是结构特性。研究小组确定了支柱支撑设计后,便开始测试各种超材料架构。对于每种结构,研究人员首先在一个小型硅芯片上打印出支撑柱,然后继续打印超材料作为柱子之间的悬浮层,在一个芯片上打印和测试数百个这样的结构。穿孔和裂缝研究小组打印出的悬浮超材料类似于错综复杂的蜂巢状截面。每种材料都印有特定的三维微观结构,如重复八面体或多面体多边形的精确支架。每个重复单元的大小与一个红血球相当。由此产生的超材料比人的头发丝还要细。随后,研究人员以每秒900米(每小时2000多英里)的速度-完全在超音速范围内向这些结构发射玻璃微粒子,测试每种超材料的抗冲击能力。他们用相机捕捉了每次撞击,并逐帧研究了生成的图像,以了解射弹是如何穿透每种材料的。接下来,他们在显微镜下检查了这些材料,并比较了每次撞击的物理后果。波特拉说:"在建筑材料中,我们看到了撞击后小圆柱形弹坑的形态。但在固体材料中,我们看到了许多径向裂缝和被刨出的大块材料"。总之,研究小组观察到,发射的粒子在晶格超材料上造成了小的穿孔,而材料却保持完好无损。与此相反,当以相同的速度将相同的粒子发射到质量相等的非晶格固体材料中时,它们会产生大裂缝,并迅速扩散,导致材料破碎。因此,微结构材料能更有效地抵御超音速撞击以及多重撞击。尤其是印有重复八面体的材料似乎最坚硬。意见和未来方向"在相同的速度下,我们看到八面体结构更难断裂,这意味着单位质量的超材料能够承受的冲击力是块状材料的两倍,"波特拉说。"这告诉我们,有一些结构可以使材料变得更坚硬,从而提供更好的冲击保护"。展望未来,该团队计划利用新的快速测试和分析方法来确定新的超材料设计,希望能标记出可升级为更坚固、更轻便的防护装备、服装、涂层和镶板的架构。波特拉说:"最让我兴奋的是,我们可以在台式机上进行大量这些极端实验。这将大大加快我们验证新型高性能弹性材料的速度。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1420685.htm手机版:https://m.cnbeta.com.tw/view/1420685.htm

相关推荐

封面图片

麻省理工学院的新方法简化了复杂材料的构造过程

麻省理工学院的新方法简化了复杂材料的构造过程麻省理工学院和奥地利科学技术研究所的研究人员创建了一种技术,将许多不同的细胞超材料构建块纳入一个统一的基于图形的表示中。他们使用这种表示创建了一个用户友好的界面,工程师可以利用该界面快速轻松地对超材料建模、编辑结构并模拟其属性。图片来源:图片由LianeMakatura、BohanWang、BoleiDeng和WojciechMatusik提供细胞超材料——由以各种模式重复的单元或细胞组成的人造结构——可以帮助实现这些目标。但很难知道哪种细胞结构会产生所需的特性。即使人们关注的是由较小的构件(如互连梁或薄板)组成的结构,也有无数种可能的布置需要考虑。因此,工程师只能手动探索所有假设可能的细胞超材料中的一小部分。麻省理工学院和奥地利科学技术研究所的研究人员开发了一种计算技术,使用户可以更轻松地从任何较小的构建块中快速设计超材料单元,然后评估所得超材料的特性。他们的方法就像超材料的专用CAD(计算机辅助设计)系统一样,允许工程师快速对非常复杂的超材料进行建模,并对可能需要数天时间才能开发的设计进行实验。用户友好的界面还使用户能够探索潜在超材料形状的整个空间,因为所有构建块都可以使用。“我们提出了一种表示方法,可以涵盖工程师传统上感兴趣的所有不同形状。因为你可以用相同的方式构建它们,这意味着你可以在它们之间更流畅地切换,”麻省理工学院电气工程和计算机科学说研究生LianeMakatura,该技术论文的共同主要作者。Makatura与麻省理工学院博士后BohanWang共同撰写了这篇论文。Yi-LuChen,奥地利科学技术研究所(ISTA)研究生;BoleiDeng,麻省理工学院博士后;ISTA教授ChrisWojtan和BerndBickel;资深作者WojciechMatusik是麻省理工学院电气工程和计算机科学教授,领导麻省理工学院计算机科学和人工智能实验室的计算设计和制造小组。该研究将在SIGGRAPH上展示。统一方法当科学家开发细胞超材料时,她通常首先选择一种用于描述其潜在设计的表示形式。此选择决定了可用于探索的形状集。例如,她可能会选择一种使用许多互连梁来表示超材料的技术。然而,这阻止了她探索基于其他元素的超材料,例如薄板或球体等3D结构。这些形状由不同的表示形式给出,但到目前为止,还没有一种统一的方法来用一种方法描述所有形状。“通过提前选择特定的子空间,你会限制你的探索并引入基于你的直觉的偏见。虽然这可能很有用,但直觉可能是不正确的,并且对于您的特定应用来说,其他一些形状可能也值得探索,”Makatura说。她和她的合作者退后一步,仔细研究了不同的超材料。他们发现构成整体结构的形状可以很容易地用低维形状来表示——梁可以简化为线,或者薄壳可以压缩为平坦的表面。他们还注意到,细胞超材料通常具有对称性,因此只需要表示结构的一小部分。其余部分可以通过旋转和镜像最初的部分来构建。“通过结合这两个观察结果,我们得出了这样的想法:细胞超材料可以很好地表示为图形结构,”她说。通过基于图形的表示,用户可以使用由顶点和边创建的构建块来构建超材料骨架。例如,要创建梁结构,需要在梁的每个端点放置一个顶点,并用一条线将它们连接起来。然后,用户使用该线上的函数来指定梁的厚度,该厚度可以变化,以便梁的一部分比另一部分厚。曲面的过程类似-用户用顶点标记最重要的特征,然后选择一个求解器来推断曲面的其余部分。这些易于使用的求解器甚至允许用户快速构建高度复杂的超材料,称为三周期最小表面(TPMS)。这些结构非常强大,但开发它们的通常过程是艰巨的并且容易失败。“通过我们的展示,您还可以开始组合这些形状。也许同时包含TPMS结构和梁结构的单元可以为您提供有趣的特性。但到目前为止,这些组合还没有得到任何程度的探索,”她说。在该过程结束时,系统输出整个基于图形的过程,显示用户为达到最终结构而采取的每项操作-所有顶点、边、解算器、变换和加厚操作。在用户界面中,设计人员可以在构建过程中的任何点预览当前结构,并直接预测某些属性,例如其刚度。然后,用户可以迭代地调整一些参数并再次评估,直到达到合适的设计。研究人员使用他们的系统重新创建了跨越许多独特类别的超材料的结构。一旦他们设计好骨架,每个超材料结构只需几秒钟即可生成。他们还创建了自动探索算法,为每个算法提供了一套规则,然后在他们的系统中将其放开。在一项测试中,算法在大约一小时内返回了1000多个潜在的基于桁架的结构。此外,研究人员还对10名几乎没有超材料建模经验的人进行了一项用户研究。用户能够成功地对他们给出的所有六种结构进行建模,并且大多数人都认为程序图表示使过程变得更容易。“我们的代表让人们更容易接触到各种结构。我们对用户生成TPMS的能力感到特别满意。即使对于专家来说,这些复杂的结构通常也很难生成。尽管如此,我们研究中的一种TPMS在所有六种结构中具有最低的平均建模时间,这令人惊讶且令人兴奋,”她说。未来,研究人员希望通过结合更复杂的骨骼增厚程序来增强他们的技术,以便该系统可以模拟更广泛的形状。他们还想继续探索自动生成算法的使用。从长远来看,他们希望使用该系统进行逆向设计,其中指定所需的材料属性,然后使用算法来找到最佳的超材料结构。...PC版:https://www.cnbeta.com.tw/articles/soft/1389329.htm手机版:https://m.cnbeta.com.tw/view/1389329.htm

封面图片

麻省理工学院科学家发现极端条件下金属的“反直觉”行为

麻省理工学院科学家发现极端条件下金属的“反直觉”行为麻省理工学院的科学家们发现,铜等金属在加热和高速撞击时会变得更坚固,这对传统观点提出了挑战,并有可能增强用于太空和高速制造等极端环境的材料。金属受热后会变得更软,这就是铁匠如何通过将铁加热至滚烫将其塑造成复杂形状的原因。任何人将铜线与钢衣架进行比较,都会很快发现铜比钢柔韧得多。但麻省理工学院的科学家们发现,当金属被超高速运动的物体撞击时,情况恰恰相反:金属温度越高,强度越大。在这些对金属造成极大压力的条件下,铜实际上和钢一样坚固。这一新发现可能为极端环境下的材料设计带来新的方法,例如保护宇宙飞船或高超音速飞机的防护罩,或高速制造工艺的设备。麻省理工学院研究生伊恩-道丁和麻省理工学院材料科学与工程系前系主任、现任西北大学工程学院院长兼麻省理工学院客座教授克里斯托弗-舒赫最近在《自然》杂志上发表的一篇论文中描述了这一发现。反直觉的结果和潜在应用作者写道,这一新发现"违背直觉,与几十年来在不太极端条件下进行的研究相悖"。这些意想不到的结果可能会影响各种应用,因为这些撞击所涉及的极端速度经常发生在陨石撞击轨道上的航天器,以及用于制造、喷砂和某些增材制造(3D打印)工艺的高速加工操作中。研究人员用来发现这种效应的实验是将直径仅为百万分之一米的蓝宝石微粒射向平整的金属板。在激光束的推动下,这些微粒达到了每秒几百米的高速度。虽然其他研究人员偶尔也做过类似的高速实验,但他们往往使用更大的冲击器,即厘米或更大的冲击器。由于这些较大的撞击主要受到撞击冲击的影响,因此无法将机械效应和热效应区分开来。说明:麻省理工学院的科学家发现,当金属被高速运动的物体以极快的速度变形时,较高的温度会使金属变得更坚固,而不是更脆弱。图中,3个粒子以大致相同的速度撞击金属表面。随着金属初始温度的升高,反弹速度更快,颗粒弹得更高,因为金属也变得更硬而不是更软。图片来源:研究人员提供研究小组使用超高速摄像机跟踪粒子。研究数据中的这个序列显示了一个粒子飞入并从表面反弹的过程。资料来源:麻省理工学院新研究中的微小粒子在撞击目标时不会产生明显的压力波。但麻省理工学院经过十年的研究,才开发出以如此高的速度推动这种微小粒子的方法。"我们利用了这一点,"舒赫说,同时还利用了其他新技术来观测高速撞击本身。观察和调查结果他说:"研究小组使用了超高速摄像机来观察粒子的来去。当粒子从表面反弹时,进入和飞出速度之间的差异"告诉你有多少能量沉积"到目标中,这是表面强度的指标。"研究人员使用的微粒由氧化铝或蓝宝石制成,"非常坚硬"。这些微粒直径为10到20微米(百万分之一米),厚度为头发丝的十分之一到五分之一。当这些微粒背后的发射台被激光束击中时,部分材料会汽化,产生一股蒸汽,将微粒推向相反的方向。研究小组使用超高速摄像机跟踪粒子。研究数据中的这个序列显示了一个粒子飞入并从表面反弹的过程。资料来源:麻省理工学院研究人员将微粒射向铜、钛和金的样品,他们希望他们的结果也适用于其他金属。他们说,他们的数据首次为这种热量越大强度越高的反常热效应提供了直接的实验证据,尽管以前也有报道暗示过这种效应。根据研究人员的分析,这种令人惊讶的效应似乎是构成金属结晶结构的有序原子阵列在不同条件下移动的方式造成的。他们的研究表明,金属在应力作用下的变形受三种不同效应的支配,其中两种效应遵循预测的轨迹,即在温度越高时变形越大,而当变形率超过一定临界值时,第三种效应(即阻力强化)的作用会发生逆转。阻力增强效果超过这个交叉点后,较高的温度会增加材料内部声子(声波或热波)的活动,这些声子与晶格中的位错相互作用,限制了它们滑动和变形的能力。道丁说,这种效应随着撞击速度和温度的增加而增强,因此"速度越快,位错的反应能力就越弱"。当然,在某些时候,升高的温度会使金属开始熔化,这时,效果又会发生逆转,导致软化。道丁说,这种强化效应"会有一个极限","但我们不知道它是什么"。舒赫说,这些发现可能会促使人们在设计可能会遇到这种极端应力的设备时选择不同的材料。例如,在通常情况下可能弱得多,但成本较低或更容易加工的金属,可能会在以前没有人想到要使用它们的情况下派上用场。研究人员所研究的极端条件并不局限于航天器或极端制造方法。道丁说:"如果你在沙尘暴中驾驶直升机,很多沙粒在撞击叶片时会达到很高的速度。"研究人员用来揭示这一现象的技术可以应用于其他各种材料和情况,包括其他金属和合金。他们说,简单地根据已知材料在不太极端条件下的特性来设计在极端条件下使用的材料,可能会导致人们对材料在极端应力下的行为产生严重的错误预期。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1433116.htm手机版:https://m.cnbeta.com.tw/view/1433116.htm

封面图片

新的蛋白质基装甲材料可抵御超音速飞行的各种投射物冲击

新的蛋白质基装甲材料可抵御超音速飞行的各种投射物冲击对下一代装甲材料的探索经常将科学家引向自然界寻找灵感,在那里,从蜗牛壳到海洋海绵都激发了一些令人兴奋的可能性。肯特大学的研究人员跟随这些脚步,开发了一个基于蛋白质的合成材料系列,可以承受超音速的冲击,他们认为有一天会在军事和空间应用中找到用途。PC版:https://www.cnbeta.com.tw/articles/soft/1335349.htm手机版:https://m.cnbeta.com.tw/view/1335349.htm

封面图片

麻省理工学院在将二维材料集成到设备方面取得突破

麻省理工学院在将二维材料集成到设备方面取得突破这幅艺术家的作品展示了麻省理工学院研究人员开发的一种新型集成平台。通过对表面力进行工程设计,他们只需一个接触和释放步骤,就能将二维材料直接集成到设备中。图片来源:SampsonWilcox/电子研究实验室提供但是,将二维材料集成到计算机芯片等设备和系统中是众所周知的难题。这些超薄结构可能会受到传统制造技术的破坏,这些技术通常依赖于使用化学品、高温或蚀刻等破坏性工艺。为了克服这一挑战,麻省理工学院和其他大学的研究人员开发出了一种新技术,只需一步就能将二维材料集成到设备中,同时保持材料表面和由此产生的界面原始无缺陷。他们的方法依赖于纳米级的工程表面力,使二维材料可以物理叠加到其他预制设备层上。由于二维材料不会受损,研究人员可以充分利用其独特的光学和电学特性。所开发的平台利用行业兼容的工具集,使这一过程可以扩展。在这里,主要作者彼得-萨特斯韦特(PeterSatterthwaite)使用MIT.nano中修改过的配准工具进行图案化配准集成。他们利用这种方法制造出了二维晶体管阵列,与使用传统制造技术制造出的器件相比,实现了新的功能。他们的方法用途广泛,可用于多种材料,可在高性能计算、传感和柔性电子器件等领域广泛应用。释放这些新功能的核心是形成清洁界面的能力,所有物质之间存在的特殊力量(称为范德华力)将这些界面连接在一起。电子工程与计算机科学(EECS)助理教授、电子学研究实验室(RLE)成员FarnazNiroui是介绍这项工作的新论文的资深作者。"范德华积分有一个基本限制,"她解释说,"由于这些作用力取决于材料的内在特性,因此无法轻易调整。因此,有些材料无法仅利用其范德华相互作用来直接相互整合。我们提出了一个解决这一限制的平台,以帮助范德华集成变得更加通用,从而促进具有新功能和改进功能的基于二维材料的设备的开发。"Niroui与论文第一作者、电子工程与计算机科学研究生PeterSatterthwaite,电子工程与计算机科学教授、RLE成员JingKong,以及麻省理工学院、波士顿大学、台湾国立清华大学、台湾国家科学技术委员会和台湾国立成功大学的其他人共同撰写了这篇论文,这项研究最近发表在《自然-电子学》上。纳米级表面力的多样性使研究人员能够将粘合剂基质转移到许多不同的材料上。例如,在这里,通过使用粘合聚合物,他们能够将图案化的石墨烯(一原子厚的碳薄片)从源基底(上图)转移到接收粘合聚合物(下图)上。图片来源:Niroui小组提供使用传统制造技术制造计算机芯片等复杂系统可能会变得一团糟。通常情况下,像硅这样的硬质材料会被凿成纳米级,然后与金属电极和绝缘层等其他元件连接,形成有源器件。这种加工过程会对材料造成损害。最近,研究人员专注于使用二维材料和一种需要连续物理堆叠的工艺,自下而上地构建设备和系统。在这种方法中,研究人员不是使用化学胶水或高温将脆弱的二维材料粘合到硅等传统表面上,而是利用范德华力将一层二维材料物理集成到设备上。范德华力是存在于所有物质之间的自然吸引力。例如,壁虎的脚会因为范德华力而暂时粘在墙上。虽然所有材料都存在范德华力,但根据材料的不同,范德华力并不总是强大到足以将它们粘在一起。例如,一种名为二硫化钼的流行半导体二维材料会粘在黄金上,但不会通过与二氧化硅等绝缘体表面的物理接触直接转移到该表面上。然而,通过整合半导体层和绝缘层制成的异质结构是电子设备的关键组成部分。以前,实现这种集成的方法是将二维材料粘合到一个中间层(如金)上,然后使用该中间层将二维材料转移到绝缘体上,最后再使用化学品或高温去除中间层。麻省理工学院的研究人员没有使用这种牺牲层,而是将低粘性绝缘体嵌入高粘性基质中。这种粘合基质使二维材料粘附在嵌入的低粘合力表面上,提供了在二维材料和绝缘体之间形成范德华界面所需的力。制作矩阵为了制造电子设备,他们在载体基底上形成金属和绝缘体的混合表面。然后将该表面剥离并翻转,就会看到一个完全光滑的顶面,其中包含所需的器件构件。这种光滑度非常重要,因为表面和二维材料之间的间隙会阻碍范德华相互作用。然后,研究人员在完全洁净的环境中单独制备二维材料,并将其与制备好的器件堆栈直接接触。"一旦混合表面与二维层接触,无需任何高温、溶剂或牺牲层,它就能拾取二维层并将其与表面整合在一起。"萨特斯韦特解释说:"通过这种方式,我们可以实现传统上被禁止的范德华集成,但现在却可以实现,而且只需一步就能形成功能齐全的器件。"这种单步工艺可使二维材料界面保持完全清洁,从而使材料达到其性能的基本极限,而不会受到缺陷或污染的影响。而且,由于二维材料的表面也保持原始状态,研究人员可以对二维材料的表面进行工程设计,以形成与其他元件的特征或连接。例如,他们利用这种技术制造出了p型晶体管,而利用二维材料制造这种晶体管通常是具有挑战性的。他们的晶体管在以前的研究基础上有所改进,可以为研究和实现实用电子产品所需的性能提供一个平台。展望未来他们的方法可以大规模地制造更大的装置阵列。粘合基质技术还可用于一系列材料,甚至与其他力量结合使用,以增强这一平台的多功能性。例如,研究人员将石墨烯集成到器件上,利用聚合物基质形成所需的范德华界面。在这种情况下,粘附依靠的是化学作用,而不仅仅是范德华力。未来,研究人员希望以此平台为基础,整合各种二维材料库,在不受加工损伤影响的情况下研究其内在特性,并利用这些卓越功能开发新的设备平台。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1423078.htm手机版:https://m.cnbeta.com.tw/view/1423078.htm

封面图片

重塑磁性:麻省理工学院拓扑材料学研究迎来开创性进展

重塑磁性:麻省理工学院拓扑材料学研究迎来开创性进展最先进的X射线和中子光谱分析发现,拓扑材料晶体中拓扑奇异性的存在使磁性稳定在经典转变温度之上。图片来源:EllaMaruStudio由麻省理工学院核科学与工程系副教授李明达领导,麻省理工学院量子测量组研究生助理研究员、哈佛大学应用物理学博士生内森-德鲁克(NathanDrucker)与麻省理工学院量子测量组研究生ThanhNguyen和PhumSiriviboon合著的一项新研究正在挑战这一传统观点。这项公开发表在《自然-通讯》(NatureCommunications)杂志上的研究首次证明,拓扑结构可以稳定磁有序,甚至远高于磁转变温度--磁性通常会在这一点上瓦解。德鲁克是这篇论文的第一作者,他说:"我喜欢用这样一个比喻来描述为什么这能起作用,那就是想象一条河里满是圆木,圆木代表材料中的磁矩。要使磁性起作用,你需要所有这些圆木都指向同一个方向,或者它们之间有一定的规律。但在高温下,磁矩都朝向不同的方向,就像河流中的原木一样,磁性就会瓦解。"他继续说:"但这项研究的重要意义在于,实际上是水在发生变化。我们所展示的是如果改变水本身的特性,而不是原木的特性,就可以改变原木之间的相互作用,从而产生磁性。"拓扑结构在增强磁性中的作用Li说,从本质上讲,这篇论文揭示了在CeAlGe(一种由铈、铝和锗组成的奇异半金属)中发现的被称为Weyl节点的拓扑结构如何显著提高磁性器件的工作温度,从而为广泛的应用打开大门。虽然拓扑材料已被用于制造传感器、陀螺仪等,但它们还被广泛应用于微电子、热电和催化设备等领域。Nguyen说,这项研究展示了在更高温度下保持磁性的方法,为更多的可能性打开了大门。在这种材料和其他拓扑材料中,人们已经展示了许多机会。这表明了一种可以显著提高这些材料工作温度的通用方法。加州理工学院物理、数学和天文学部物理学助理教授LindaYe补充说,这一"相当令人惊讶和反直觉"的结果将对拓扑材料的未来工作产生重大影响。研究工作表明,电子拓扑节点不仅在稳定静态磁序方面发挥作用,而且更广泛地说,它们可以在磁波动的产生方面发挥作用。由此得出的一个自然结论是,拓扑韦尔态对材料的影响可能远远超出人们之前的认识。普林斯顿大学物理学教授安德烈-伯内维格对此表示赞同,称这一发现"令人费解,也非常了不起。众所周知,Weyls节点受到拓扑学保护,但这种保护对相的热力学性质的影响并不十分清楚,麻省理工学院研究小组的论文表明,在有序温度之上的短程有序受该体系中出现的韦尔费米子之间的嵌套波矢量支配......这可能表明,韦尔节点的保护在某种程度上影响了磁波动!"揭开磁性之谜虽然这些令人惊讶的结果挑战了人们长期以来对磁性和拓扑学的理解,这是精心实验的结果,也是研究小组愿意探索那些可能被忽视的领域的结果。"我们的假设是,在磁转变温度之上没有新的发现,"Li解释说。"我们使用了五种不同的实验方法,以一致的方式创造了这个全面的故事,并将这个谜团拼凑在一起。"为了证明磁性在更高温度下的存在,研究人员首先在熔炉中将铈、铝和锗结合在一起,形成毫米大小的材料晶体。然后对这些样品进行了一系列测试,包括热导率和电导率测试,每项测试都揭示了这种材料不寻常磁性行为的线索。德鲁克说:"不过,我们还采用了一些更奇特的方法来测试这种材料。我们用一束与材料中的铈的能级相同的X射线照射这种材料,然后测量光束的散射情况。这些测试必须在能源部国家实验室的一个大型设备中进行。最终,我们不得不在三个不同的国家实验室做类似的实验,以证明那里存在这种隐藏的秩序,我们就是这样找到了最有力的证据。"Nguyen说,"部分挑战在于,在拓扑材料上进行此类实验通常非常困难,而且通常只能提供间接证据。在这种情况下所做的就是使用不同的探针进行多项实验,把它们放在一起,就能给我们一个非常全面的故事。在这种情况下,有五六条不同的线索,还有一大串仪器和测量结果都在这项研究中发挥了作用"。影响和未来方向展望未来,研究小组计划探索拓扑结构与磁性之间的关系能否在其他材料中得到证明。他们相信这一原理具有普遍性。因此,这可能存在于许多其他材料中,它拓展了我们对拓扑学作用的理解。我们知道它可以在增加导电性方面发挥作用,现在我们已经证明它也可以在磁性方面发挥作用。未来的其他工作还将涉及拓扑材料的可能应用,包括它们在热电设备中的应用,这种设备可以将热量转化为电能。虽然这类设备已经用于为手表等小型设备供电,但其效率还不足以为手机或其他大型设备供电。"我们已经研究了许多优秀的热电材料,它们都是拓扑材料,"Li说。"如果它们能用磁性显示出这种性能......它们将释放出非常好的热电特性。例如,这将有助于它们在更高的温度下运行。现在,许多太阳能电池只能在很低的温度下运行,以收集废热。这样做的一个非常自然的结果就是它们能够在更高的温度下工作"。这项研究最终表明,虽然拓扑半金属材料已经研究了很多年,但人们对它们的特性了解相对较少。德鲁克说:"我认为,我们的工作凸显了这样一个事实:当你观察这些不同的尺度,并使用不同的实验来研究其中一些材料时,事实上,一些非常重要的热电、电学和磁学特性就会开始显现出来。因此,我认为这不仅为我们如何将这些东西用于不同的应用提供了提示,也为我们如何更好地理解这些热波动效应的其他基础研究提供了跟进。"...PC版:https://www.cnbeta.com.tw/articles/soft/1390435.htm手机版:https://m.cnbeta.com.tw/view/1390435.htm

封面图片

突破性的新型减震材料可以阻止超音速级别的撞击

突破性的新型减震材料可以阻止超音速级别的撞击这种被命名为TSAM(TalinShockAbsorbingMaterials)的新型蛋白质系列材料代表了第一个已知的能够吸收超音速弹丸冲击的SynBio(或合成生物学)材料的例子。它为开发下一代防弹装甲和弹丸捕捉材料打开了大门,使人们能够研究太空和高层大气(天体物理学)中的超高速撞击。BenGoult教授解释说:"我们对作为细胞天然减震器的蛋白质滑石蛋白的研究表明,这种分子包含一系列的二元开关域,在张力下打开,一旦张力下降就重新折叠。这种对力的反应使滑石蛋白具有分子冲击吸收的特性,保护我们的细胞不受巨大力变化的影响。当我们将滑石蛋白聚合成TSAM时,我们发现滑石蛋白单体的减震特性使该材料具有不可思议的特性。"该团队继续展示了TSAM的实际应用,使这种水凝胶材料受到1.5公里/秒(3400英里/小时)的超音速冲击--这一速度比太空中的粒子冲击自然和人造物体(通常>1公里/秒)和枪支的枪口速度--通常在0.4-1.0公里/秒(900-2200英里/小时)之间。此外,研究小组发现,TSAM不仅可以吸收玄武岩颗粒(直径约60微米)和较大的铝弹片的冲击,而且还可以在冲击后完好地保存这些弹丸。目前的防弹衣往往是由陶瓷面和纤维增强的复合材料组成,既重又累赘。另外,虽然这种装甲能有效地阻挡子弹和弹片,但它不能阻挡动能,而动能会导致装甲后面依然发生钝器创伤。此外,这种形式的装甲在撞击后往往会因为结构的完整性受到影响而造成不可逆转的损坏,从而无法继续使用。这使得在新的装甲设计中加入TSAM成为这些传统技术的潜在替代方案,提供一种更轻、更持久的装甲,还能保护穿戴者免受更广泛的伤害,包括由冲击引起的伤害。此外,TSAM在撞击后捕获和保存射弹的能力使其适用于航空航天领域,该领域需要能量耗散材料,以便有效收集空间碎片、空间尘埃和微流星体,用于进一步的科学研究。此外,这些被捕获的射弹有助于航空航天设备的设计,改善宇航员的安全和昂贵的航空航天设备的寿命。在这里,TSAM可以提供行业标准气凝胶的替代品--气凝胶很容易因射弹撞击导致的温度升高而融化。JenHiscock教授说。"这个项目产生于基础生物学、化学和材料科学之间的跨学科合作,其结果是生产出了这种令人惊叹的新材料。我们对TSAM解决现实世界问题的潜在转化可能性感到非常兴奋。这是我们在国防和航空航天部门的新合作者的支持下积极开展研究的事情。"...PC版:https://www.cnbeta.com.tw/articles/soft/1335475.htm手机版:https://m.cnbeta.com.tw/view/1335475.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人