毁灭世界的恒星在大杀四方后被发现有一道奇特的金属疤痕

毁灭世界的恒星在大杀四方后被发现有一道奇特的金属疤痕艺术家印象中的白矮星,其金属"疤痕"(极点附近的黑斑)是由行星和小行星的毁灭造成的ESO/L.卡尔卡达这颗白矮星被命名为WD0816-310,乍一听感觉像是天文学命名过程中缺乏创意的典型例子,但如果我们想紧扣主题的话,它听起来又有点像监狱囚犯的编号。恰如其分的是,这颗濒临死亡的恒星在其暴力的过去留下了一道独特的伤疤。白矮星诞生于混沌之中--当一颗具有一定质量的恒星耗尽其燃料供应时,它会被自身的废物窒息并向外爆裂,留下一个致密的内核,然后经过数万亿年冷却到宇宙的背景温度。而这通常会给任何可能围绕原恒星运行的行星带来灭顶之灾,它们的碎屑最终会倾泻到白矮星上。天文学家以前曾在白矮星上发现过这些被毁坏的世界的金属特征,但通常它们都很均匀地覆盖了整个表面。但WD0816-310以某种方式把所有的金属都聚集到了一个地方,就像一个伤疤一样,这是前所未见的。当天文学家使用甚大望远镜时发现,随着白矮星的旋转,金属特征也在发生变化,这表明白矮星的某一位置聚集了更多的金属。有趣的是,这些变化与磁场的变化同步,这意味着疤痕位于白矮星的一个磁极。这表明,落向表面的行星物质被磁场引导到磁极,然后被固定在那里。研究报告的共同作者杰伊-法里希说:"我们的研究工作已经证明,这些金属来自与灶神星一样大或可能比灶神星更大的行星碎片,灶神星直径约500公里(310英里),是太阳系中第二大的小行星。"这项研究发表在《天体物理学杂志通讯》上。下面的视频介绍了这一发现。...PC版:https://www.cnbeta.com.tw/articles/soft/1421163.htm手机版:https://m.cnbeta.com.tw/view/1421163.htm

相关推荐

封面图片

恒星墓地的秘密:天文学家解开白矮星表面意料之外出现重金属的秘密

恒星墓地的秘密:天文学家解开白矮星表面意料之外出现重金属的秘密尽管这些恒星残骸非常普遍,但其化学构成多年来一直是天文学家的一个难题。在这些紧凑的天体中,许多天体的表面都存在重金属元素,如硅、镁和钙,这一令人费解的发现打破了我们对恒星行为的预期。"我们知道,如果这些重金属存在于白矮星的表面,那么白矮星的密度足够大,这些重金属应该会很快沉向核心,"JILA研究生秋叶达也解释说。"所以,你不应该在白矮星表面看到任何金属,除非白矮星正在主动吃掉什么东西。"虽然白矮星可以吞噬附近的各种天体,如彗星或小行星(被称为planetesimals),但这一过程的复杂性仍有待充分探索。不过,这种行为可能是揭开白矮星金属成分之谜的关键,有可能带来有关白矮星动力学的激动人心的启示。围绕白矮星运行的小行星轨道最初,每颗行星都有一个圆形的顺行轨道。踢脚形成一个偏心碎片盘,其中有顺行轨道(蓝色)和逆行轨道(橙色)。资料来源:StevenBurrows/MadiganGroup/JILA在《天体物理学杂志通讯》(TheAstrophysicalJournalLetters)上发表的一篇新论文中,秋叶与JILA研究员、科罗拉多大学博尔德分校天体物理与行星科学教授安-玛丽-马迪根(Ann-MarieMadigan)和本科生塞拉-麦金太尔(SelahMcIntyre)一起,认为他们找到了这些恒星僵尸吞噬附近行星的原因。研究人员利用计算机模拟了白矮星在形成过程中因非对称质量损失而受到的"产婆踢"(已被观测到),从而改变了白矮星的运动和周围物质的动态。在80%的测试运行中,研究人员观察到,从踢脚开始,白矮星30至240AU范围内(相当于太阳与海王星的距离及以上)的彗星和小行星的轨道变得拉长和排列整齐。此外,在随后被吃掉的行星小行星中,约有40%来自逆向旋转(逆行)轨道。研究人员还扩大了模拟范围,研究了白矮星在一亿年后的动态变化。他们发现,白矮星附近的类星体仍然具有拉长的轨道,并作为一个连贯的单元运动,这是以前从未见过的结果。"这是我认为我们理论的独特之处:我们可以解释为什么吸积事件如此持久,"马迪根说。"虽然其他机制可以解释最初的吸积事件,但我们用踢脚模拟的结果表明,为什么数亿年后吸积事件仍然会发生。"这些结果解释了为什么重金属会出现在白矮星的表面,因为白矮星会不断吞噬其路径上的较小天体。马迪根在JILA的研究小组主要研究引力动力学,因此研究白矮星周围的引力似乎是一个自然而然的研究重点。"模拟可以帮助我们了解不同天体的动态,"秋叶说。"因此,在这个模拟中,我们把一堆小行星和彗星扔到大得多的白矮星周围,看看模拟是如何演变的,以及白矮星吃掉了哪些小行星和彗星。"研究人员希望在未来的项目中将他们的模拟扩展到更大的规模,研究白矮星如何与更大的行星相互作用。正如秋叶所阐述的:"其他研究表明,小行星和彗星这些小天体可能不是白矮星表面金属污染的唯一来源。因此,白矮星可能会吃掉更大的东西,比如行星。"这些新发现进一步揭示了有关白矮星形成的更多信息,这对于了解太阳系如何在数百万年中发生变化非常重要。它们还有助于揭示太阳系的起源和未来演化,揭示更多有关化学的知识。马迪根说:"宇宙中绝大多数行星最终都会围绕白矮星运行。这些系统中可能有50%会被恒星吞噬,包括我们自己的太阳系。现在,我们有了一种机制来解释为什么会发生这种情况。行星碎片可以让我们深入了解太阳系以外的其他太阳系和行星构成。白矮星不仅仅是一个了解过去的透镜。它们也是洞察未来的透镜。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1429877.htm手机版:https://m.cnbeta.com.tw/view/1429877.htm

封面图片

天文学家发现银河系中最古老的行星碎片 被摧毁的星系残留物

天文学家发现银河系中最古老的行星碎片被摧毁的星系残留物艺术家对老白矮星WDJ2147-4035和WDJ1922+0233的印象,它们被轨道上的行星碎片所包围,这些碎片将吸附在恒星上,污染它们的大气。WDJ2147-4035是极其红色和暗淡的,而WDJ1922+0233是异常的蓝色。资料来源:华威大学/MarkGarlick博士大多数恒星,包括像我们太阳这样的恒星最终会变成白矮星。白矮星是一颗已经用完所有燃料的恒星,失去了它的外层,现在正经历着一个收缩和冷却的过程。在这个过程中,任何在轨道上的行星都会被打乱,在某些情况下,还会被摧毁,而它们的碎片会被留下来,吸附在白矮星的表面。为了进行这项研究,天文学家团队对欧洲航天局GAIA空间观测站探测到的两颗不寻常的白矮星进行了建模。这两颗恒星都受到了行星碎片的污染。其中一颗被发现为异常的蓝色,而另一颗则是迄今为止在本地银河系附近发现的最暗和最红的。两者都接受了科学家团队的进一步分析。天文学家们利用来自GAIA、暗能量调查和欧洲南方天文台的X-Shooter仪器的光谱和测光数据来计算这些恒星已经冷却了多长时间。他们发现"红色"恒星WDJ2147-4035的年龄约为107亿年,其中102亿年是作为白矮星冷却的时间。光谱学涉及分析来自恒星的不同波长的光。这可以检测出恒星大气中的元素何时吸收不同颜色的光,并帮助确定这些元素是什么,以及存在多少。通过分析WDJ2147-4035的光谱,研究小组发现了金属钠、锂和钾的存在,并初步探测到了碳在该恒星上的增殖--这使得该恒星成为迄今为止发现的最古老的金属污染的白矮星。第二颗"蓝色"恒星WDJ1922+0233只比WDJ2147-4035略微年轻,被成分类似于地球大陆地壳的行星碎片所污染。科学小组得出结论,尽管WDJ1922+0233的表面温度很低,但它的蓝色是由其不寻常的氦氢混合大气造成的。在红星WDJ2147-4035原本几乎是纯氦和高重力的大气中发现的碎片来自一个古老的行星系统,它在该星演化为白矮星的过程中幸存下来,这使得天文学家们得出结论,这是银河系中发现的围绕白矮星的最古老的行星系统。主要作者、华威大学物理系博士生阿比盖尔·埃尔姆斯说。"这些被金属污染的恒星表明,地球并不是唯一的,还有其他行星系统,其行星体与地球相似。97%的恒星都会变成白矮星,它们在宇宙中无处不在,所以了解它们非常重要,尤其是这些极冷的恒星。冷白矮星由我们银河系中最古老的恒星形成,它提供了关于银河系中最古老的恒星周围行星系统的形成和演变的信息。""我们正在发现银河系中最古老的恒星残骸,它们被曾经的类地行星所污染。想到这发生在100亿年的规模上,而且这些行星在地球形成之前就已经死亡,这真是令人惊讶。"天文学家还可以利用恒星的光谱来确定这些金属沉入恒星核心的速度,这使他们能够回顾过去,确定这些金属中的每一种在最初的行星体中的丰度。通过将这些丰度与在我们自己的太阳系中发现的天体和行星材料进行比较,我们可以猜测在恒星死亡并成为白矮星之前,这些行星会是什么样子--但在WDJ2147-4035的案例中,这已被证明是一种挑战。阿比盖尔解释说。"红星WDJ2147-4035是一个谜,因为吸积的行星碎片非常富含锂和钾,与我们自己的太阳系中已知的任何东西都不同。这是一颗非常有趣的白矮星,因为它的超冷表面温度、污染它的金属、它的老龄化,以及它具有磁性的事实,使它变得极为罕见"。华威大学物理系的Pier-EmmanuelTremblay教授说。"当这些古老的恒星在100多亿年前形成时,宇宙的金属含量没有现在这么丰富,因为金属是在进化的恒星和巨大的恒星爆炸中形成。这两颗被观测到的白矮星为行星的形成提供了一个令人兴奋的窗口,在一个金属贫乏和气体丰富的环境中,与太阳系形成时的条件不同。"...PC版:https://www.cnbeta.com.tw/articles/soft/1332289.htm手机版:https://m.cnbeta.com.tw/view/1332289.htm

封面图片

“天体墓地”揭示了恒星和行星共同成长的事实

“天体墓地”揭示了恒星和行星共同成长的事实由剑桥大学领导的这项研究改变了我们对包括我们自己的太阳系在内的行星系统如何形成的理解,有可能解决天文学中的一个重大难题。该研究的第一作者、剑桥大学天文学研究所的AmyBonsor博士说:"我们对行星如何形成有相当好的了解,但我们有一个悬而未决的问题是它们何时形成:行星的形成是在早期开始,当母星仍在成长,还是在数百万年后?"为了尝试回答这个问题,Bonsor和她的同事们研究了白矮星的大气--像我们的太阳这样的古老而微弱的恒星的残余以调查行星形成的组成部分。这项研究还涉及来自牛津大学、慕尼黑路德维希-马克西米利安大学、格罗宁根大学和哥廷根马克斯-普朗克太阳系研究所的研究人员。Bonsor说:"一些白矮星是惊人的'实验室',因为它们稀薄的大气层几乎像天体的墓地。"通常情况下,行星的内部是望远镜所不能及的。但是有一类特殊的白矮星被称为"污染"系统,在它们通常干净的大气中含有重元素,如镁、铁和钙。这些元素一定是来自行星形成时留下的小行星等小天体,它们撞上了白矮星并在其大气层中燃烧起来。因此,对被污染的白矮星的光谱观测可以探测那些被撕碎的小行星的内部,让天文学家直接了解它们的形成条件。行星的形成被认为是从原行星盘开始的--主要由氢、氦和微小的冰和尘埃颗粒组成,通常围绕着一颗年轻的恒星。根据目前关于行星如何形成的主要理论,尘埃粒子相互粘连,最终形成越来越大的固体体。这些较大的物体中,有些会继续增生,成为行星,有些则保持为小行星,就像目前研究中撞入白矮星的那些小行星。研究人员分析了来自附近星系的200颗被污染的白矮星的大气层的光谱观测。根据他们的分析,在这些白矮星的大气中看到的元素混合物只能解释为许多原来的小行星曾经融化,这导致重铁沉入核心,而较轻的元素漂浮在表面。这个过程被称为分化,是导致地球拥有一个富含铁的核心的原因。Bonsor说:"熔化的原因只能归因于寿命很短的放射性元素,这些元素存在于行星系统的最初阶段,但在短短一百万年内就会衰变消失。换句话说,如果这些小行星被某种在行星系统初期只存在非常短暂的东西所融化,那么行星的形成过程必须非常迅速地启动。"该研究表明,早期形成的情况很可能是正确的,这意味着木星和土星有足够的时间成长为目前的大小。邦索尔说:"我们的研究补充了该领域越来越多的共识,即行星的形成很早就开始了,第一批天体与恒星同时形成,对被污染的白矮星的分析告诉我们,这种放射性熔化过程是影响所有太阳系外行星形成的一个潜在的普遍的机制。""这只是一个开始--每当我们发现一个新的白矮星,我们就可以收集更多的证据,了解更多关于行星如何形成的信息。我们可以追踪像镍和铬这样的元素,并说一个小行星在形成其铁核心时一定有多大。我们能够在系外行星系统中探测这样的过程,这很令人惊讶。"...PC版:https://www.cnbeta.com.tw/articles/soft/1337751.htm手机版:https://m.cnbeta.com.tw/view/1337751.htm

封面图片

天文学家观察到光线在白矮星周围发生弯曲

天文学家观察到光线在白矮星周围发生弯曲当然,它实际上并没有在天空中改变位置,只是看起来是这样的,在天文学家的观察下,根据光线围绕白矮星的弯曲情况。这是天文学家第一次注意到像LAWD37这样的单一、孤立的恒星周围的这种特殊效应。正在测量的白矮星图片来源:美国国家航空航天局,欧空局,彼得-麦格纳特。NASA,ESA,PeterMcGill(UCSantaCruz,IoA),KailashSahu(STSCI);图像处理。JosephDePasquale(STSCI)像LAWD37这样的恒星可以让我们对恒星的演变过程有了宝贵的了解。这颗特殊的恒星是类似于我们太阳的恒星死亡的结果。当这些恒星死亡并变成白矮星时,它们的外部物质被驱逐出去,只留下空间中一个热的、密集的核心。在这一点上,恒星周围的物质开始以不同的方式行动,为天文学家带来了更多的问题以等待回答。由于这颗白矮星在天文学上看离我们有点近,我们有大量关于它的数据。但是我们从来没有测量过它的质量。至少到现在为止没有。随着天文学家能够更多地了解这颗白矮星,我们很可能看到新的大门打开,以帮助科学家更深入地挖掘在我们整个宇宙中发现的其他孤立的恒星,这在天文学家发现这种新方法之前是不可能的。以前发现的大质量白矮星也帮助天文学家回答了关于恒星进化的重要问题。...PC版:https://www.cnbeta.com.tw/articles/soft/1343175.htm手机版:https://m.cnbeta.com.tw/view/1343175.htm

封面图片

研究人员发现有些白矮星数十亿年来持续发光的原因

研究人员发现有些白矮星数十亿年来持续发光的原因研究人员发现了一些白矮星数十亿年来一直发光的原因:这是一个核心过程,在这个过程中,较轻的晶体上升,密度较大的液体下沉,从而平衡能量并保持表面亮度。西蒙-布劳因(SimonBlouin)与华威大学和新泽西州普林斯顿高等研究所的合著者共同进行的最新研究揭示,在这些行为怪异的恒星内核中,密度较低的晶体形成并上浮,而密度较高且含有重杂质的液体则下沉。这种固液蒸馏过程中断了数十亿年的冷却,解释了所观测到的延迟白矮星异常群体的所有特性。恒星生命周期与白矮星冷却恒星的生命周期始于气体星云,在那里,引力开始把物质拉到一起,直到物质聚集到一定数量,新太阳的内核开始把氢核熔合在一起,并向宇宙发出光。最终,大多数恒星都会耗尽核燃料,脱去外层进入行星状星云,最后变成地球大小的白矮星,不再进行核聚变。由于没有核聚变的燃料源,人们预计这些恒星在剩下的时间里只会冷却。这些关于冷却的假设为白矮星年龄的估算提供了依据,进而影响了我们对银河系形成的理解。由欧洲航天局(ESA)运营的盖亚(Gaia)从地球轨道对天空进行观测,绘制出最大、最精确的银河系三维地图。这张图片显示的是盖亚根据对近17亿颗恒星的测量结果绘制的银河系全天空视图。图片来源:ESA/Gaia/DPAC,CCBY-SA3.0IGO盖亚卫星观测和研究成果白矮星冷却的预期与欧洲航天局盖亚卫星的观测数据相冲突,盖亚卫星在2019年的观测数据显示,白矮星群体在超过80亿年的时间里显然能够停止冷却,这几乎是地球年龄的两倍,也是宇宙大爆炸以来年龄的一半以上。布劳因和他的合作者的发现解释了白矮星持久发光的原因--"蒸馏过程"(轻晶体形成并上浮,而密度较大的液体下沉)导致引力能量的释放。这一过程输出的能量几乎完全平衡了白矮星向太空辐射的能量,使其表面光度和温度基本保持不变。"展望未来,"布劳因解释说,"在利用白矮星作为宇宙时钟来测量恒星年龄时,将这一机制考虑在内将非常重要"。西蒙-布劳因的贡献西蒙-布劳因(SimonBlouin)是加拿大理论天体物理研究所(CITA)的国家研究员,在维多利亚大学师从福尔克-赫尔维格(FalkHerwig)教授。布劳因于2019年在蒙特利尔大学获得物理学博士学位,之后在美国洛斯阿拉莫斯国家实验室和维多利亚大学完成博士后研究。他的工作采用多种模拟技术来改进白矮星模型。这提高了物理学家和天文学家利用这些恒星作为精确宇宙时钟的能力,有助于推断银河系恒星形成的历史。布劳因及其合作者的最新研究成果刚刚发表在《自然》(Nature)杂志上,他们确定了使延迟白矮星在数十亿年内保持高温的机制,从而解释了白矮星的第二次恒星生命。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1423042.htm手机版:https://m.cnbeta.com.tw/view/1423042.htm

封面图片

公民科学项目发现超高速恒星以130万英里/小时的速度穿越银河系

公民科学项目发现超高速恒星以130万英里/小时的速度穿越银河系对一颗名为CWISEJ124909+362116.0的L型亚矮星速度的可能解释的模拟显示,它是一对白矮星双星的一部分,最后白矮星爆炸成为超新星。图片来源:AdamMakarenko/W.M.Keck天文台太阳在银河系中的运动太阳看似静止不动,而其轨道上的行星却在运动,但实际上,太阳正以每秒约220公里的惊人速度围绕银河系运行,几乎每小时50万英里。尽管速度看起来很快,但当人们发现一颗微弱的红色恒星以明显快的速度划过天空时,科学家们还是注意到了这一点。发现一颗超高速恒星在一个名为"后院世界:行星9"的公民科学项目和一个来自全国各地的天文学家团队的努力下,一颗罕见的超高速L亚矮星被发现在银河系中飞驰。更值得注意的是,这颗恒星的运行轨迹可能会导致它完全离开银河系。这项研究由加州大学圣地亚哥分校天文学和天体物理学教授亚当-布加瑟(AdamBurgasser)领导,今天在威斯康星州麦迪逊举行的美国天文学会(AAS)第244届全国会议期间的新闻发布会上发表。这颗迷人的恒星被命名为CWISEJ124909+362116.0("J1249+36"),它是由参与"后院世界:行星9号"项目的8万多名公民科学志愿者中的一些人首先注意到的,这些志愿者梳理了NASA的宽视场红外巡天探测器(WISE)任务在过去14年中收集的大量数据。人类在进化过程中被赋予了寻找规律和发现异常的敏锐能力,这是计算机技术无法比拟的。志愿者在数据文件中标记移动的天体,当有足够多的志愿者标记同一个天体时,天文学家就会进行调查。定义褐矮星:一类天体,体积太大,不能被视为像木星那样的"气态巨行星",但体积太小,不能为恒星的核聚变提供动力。白矮星:已耗尽所有核燃料的恒星的致密、紧凑的残余物。亚矮星:一类缺乏氢或氦以外元素的恒星,通常是银河系中最古老的恒星。分析恒星的速度和组成J1249+36立即脱颖而出,因为它在天空中移动的速度非常快,初步估计约为每秒600公里(每小时130万英里)。在这种速度下,这颗恒星的速度足以摆脱银河系的引力,使它成为一颗潜在的"超高速"恒星。为了更好地了解这个天体的性质,布尔加瑟求助于夏威夷毛纳凯亚的W.M.凯克天文台测量它的红外光谱。这些数据显示,该天体是一颗罕见的L亚矮星--一类质量和温度都非常低的恒星。亚矮星是银河系中最古老的恒星。新的大气模型和发现加州大学圣迭戈分校校友罗曼-格拉西莫夫(RomanGerasimov)与加州大学LEADS学者埃弗拉因-阿尔瓦拉多三世(EfrainAlvaradoIII)合作,建立了一套新的大气模型,专门用于研究L亚矮星。Alvarado说:"看到我们的模型能够与观测到的光谱精确匹配,我们感到非常兴奋。"光谱数据以及来自几个地面望远镜的成像数据使研究小组能够精确测量J1249+36在太空中的位置和速度,从而预测它穿过银河系的轨道。布尔加瑟说:"这就是这个星源变得非常有趣的地方,因为它的速度和轨迹显示,它的移动速度足以逃离银河系。"您知道吗?以每秒220千米的速度计算,太阳绕银河一周需要2亿多年。这就是所谓的太阳银河年。校友罗曼-格拉西莫夫(RomanGerasimov)是这项研究的合著者之一,最近,他因在球状星团中褐矮星建模方面的研究成果而获得了评选严格的国际天文学联盟博士奖。是什么让这颗星熠熠生辉?研究人员主要从两种可能的情况来解释J1249+36的不寻常轨迹。第一种情况是,J1249+36最初是一颗白矮星的低质量伴星。白矮星是已耗尽核燃料并死亡的恒星的残余核心。当恒星伴星与白矮星处于非常接近的轨道上时,它就会转移质量,从而导致被称为新星的周期性爆发。如果白矮星聚集了过多的质量,它就会坍缩并爆发成超新星。"在这种超新星中,白矮星被完全摧毁,因此它的伴星被释放出来,以它原来的轨道速度飞走,再加上超新星爆炸的一点冲击力,"布尔加瑟说。"我们的计算显示这种情况是可行的。不过,白矮星已经不在那里了,而且很可能发生在几百万年前的爆炸残留物已经消散,所以我们没有确切的证据证明这就是它的起源。"在第二种情况下,J1249+36最初是一个球状星团的成员,球状星团是由恒星组成的紧密结合的星团,其明显的球形形状一眼就能辨认出来。据预测,这些星团的中心会包含各种质量的黑洞。这些黑洞还可以形成双星,对于任何碰巧徘徊在它们附近的恒星来说,这些系统都是巨大的弹射器。加州大学圣迭戈分校天文学与天体物理学系即将上任的助理教授凯尔-克雷默解释说:"当一颗恒星遇到一个黑洞双星时,这种三体相互作用的复杂动力学会将这颗恒星直接抛出球状星团。克雷默进行了一系列模拟,发现在极少数情况下,这种相互作用会将一颗低质量的亚矮星踢出球状星团,其轨迹与观测到的J1249+36类似。""它展示了一个概念证明,"克雷默说,"但我们实际上并不知道这颗恒星来自哪个球状星团。"追溯J1249+36的历史,会发现它位于天空中一个非常拥挤的区域,那里可能隐藏着未被发现的星团。"未来研究与元素构成布尔加瑟说,为了确定上述两种情况或其他机制能否解释J1249+36的轨迹,研究小组希望更仔细地研究它的元素组成。例如,白矮星爆炸时会产生重元素,这些重元素可能会在J1249+36逃逸时"污染"其大气层。银河系球状星团和卫星星系中的恒星也有独特的丰度模式,可能揭示了J1249+36的起源。格拉西莫夫说:"我们基本上是在寻找一种化学指纹,以确定这颗恒星来自哪个星系。"他的建模工作使他能够测量几个球状星团中冷恒星的元素丰度,他也将在美国科学院会议上介绍这项工作。"无论J1249+36的快速旅行是因为超新星、与黑洞双星的偶遇还是其他什么情况,它的发现都为天文学家提供了一个了解银河系历史和动态的新机会。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1434671.htm手机版:https://m.cnbeta.com.tw/view/1434671.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人