研究人员利用具有光反馈功能的VCSEL阵列开发出一台计算机

研究人员利用具有光反馈功能的VCSEL阵列开发出一台计算机我们先来了解伊辛问题。它的原理如下:想象一下,把一个问题表示成一个图,图中的节点由边连接。每个节点都有两个状态,要么+1,要么-1,代表潜在的解决方案。我们的目标是根据"哈密顿"的概念,找到使系统总能量最小的配置。在伊辛计算机中(此处以4位为例),所有变量都在并行地朝着一个解决方案演进。来源:作者doi:10.1117/1.JOM.4.1.014501为了高效求解伊辛哈密顿方程,研究人员正在探索能够超越传统计算机的物理系统。一种很有前景的方法是使用基于光的技术,将信息编码成偏振状态、相位或振幅等属性。通过利用干涉和光反馈等效应,这些系统可以快速找到正确的解决方案。在发表于《光学微系统杂志》(JournalofOpticalMicrosystems)上的一项研究中,新加坡国立大学和新加坡科学技术研究局的研究人员探讨了利用垂直腔面发射激光器(VCSEL)系统来解决伊辛问题。在这个装置中,信息被编码在VCSEL的线性偏振态中,每个态对应一个潜在的解决方案。激光器相互连接,它们之间的相互作用编码了问题的结构。研究人员在2位、3位和4位Ising问题上测试了他们的系统,发现结果很有希望。不过也发现了一些挑战,例如需要最小的VCSEL激光各向异性,这在实践中可能很难实现。尽管如此,克服这些挑战可能会产生一种基于VCSEL的全光学计算机架构,能够解决目前传统计算机无法解决的问题。参考文献:BrandonLoke、ZifengYuan、SoonThorLim、AaronDanner于2023年12月28日发表的《使用光注入锁定VCSEL的Ising计算线性偏振态编码》,《光微系统杂志》。doi:10.1117/1.jom.4.1.014501编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1421167.htm手机版:https://m.cnbeta.com.tw/view/1421167.htm

相关推荐

封面图片

IBM计算机“基准”实验显示量子计算机将在两年内超越传统计算机

IBM计算机“基准”实验显示量子计算机将在两年内超越传统计算机这项新研究的成果发表在上周的《自然》杂志上。科学家们使用IBM量子计算机Eagle来模拟真实材料的磁性,处理速度比传统计算机更快。IBM量子计算机之所以能超越传统计算机,是因为其使用了一种特殊的误差缓解过程来补偿噪声带来的影响。而噪声正是量子计算机的一个基本弱点。基于硅芯片的传统计算机依赖于“比特(bit)”进行运算,但其只能取0或1这两个值。相比之下,量子计算机使用的量子比特可以同时呈现多种状态。量子比特依赖于量子叠加和量子纠缠等量子现象。理论上这使得量子比特的计算速度更快,而且可以真正实现并行计算。相比之下,传统计算机基于比特的计算速度很慢,而且需要按顺序依次进行。但从历史上看,量子计算机有一个致命的弱点:量子比特的量子态非常脆弱,来自外部环境的微小破坏也会永远扰乱它们的状态,从而干扰所携带的信息。这使得量子计算机非常容易出错或“出现噪声”。在这一新的原理验证实验中,127量子比特的Eagle超级计算机用建立在超导电路上的量子比特计算了二维固体的完整磁性状态。然后,研究人员仔细测量每个量子比特所产生的噪声。事实证明,诸如超级计算材料中的缺陷等因素可以可靠预测每个量子比特所产生的噪声。据报道,研究小组随后利用这些预测值来模拟生成没有噪音的结果。量子霸权的说法之前就出现过。2019年,谷歌的科学家们声称,公司开发的量子计算机Sycamore在200秒内解决了一个普通计算机需要1万年才能破解的问题。但谷歌量子计算机所解决的问题本质上就是生成一长串随机数,然后检查它们的准确性,并没有什么实际用途。相比之下,用IBM量子计算机完成的新实验是一个高度简化但有真实应用价值的物理问题。2019年谷歌量子霸权研究成果参与者之一、加州大学圣巴巴拉分校物理学家约翰·马丁尼斯(JohnMartinis)表示,“这能让人们乐观认为,它将在其他系统和更复杂的算法中发挥作用。”(辰辰)...PC版:https://www.cnbeta.com.tw/articles/soft/1366285.htm手机版:https://m.cnbeta.com.tw/view/1366285.htm

封面图片

研究人员发现了阻碍量子计算机发展的物理极限

研究人员发现了阻碍量子计算机发展的物理极限维也纳科技大学的研究人员发现,时间测量设备存在一种新的权衡,可能对大规模量子计算机性能设定硬性限制。尽管问题不紧迫,但我们将量子操作系统从原型发展为实用计算机将面临越来越大的挑战。时间的度量受到物理限制,其中一个限制是时间分割的精度。"时间测量总是与熵有关,"维也纳科技大学量子信息与量子热力学交叉研究小组负责人、高级作者MarcusHuber说。研究表明,除非有无限能量,否则快速计时钟最终会遇到精度问题。时钟要么运行得快,要么运行得精确,两者不能同时兼得。对于量子计算等技术而言,时间的准确性至关重要。粒子数量增加时,计算的时间变得更加有限。虽然其他因素也限制量子计算机的精度,但时间测量的基本极限也起着关键作用。量子计算机的未来稳定性和性能,可能取决于我们是否能够解决时间测量方面的物理障碍。——(概述)

封面图片

中国研究人员报告能用现有量子计算机破解 2048 位 RSA

中国研究人员报告能用现有量子计算机破解2048位RSA清华和浙大等中国研究人员在预印本平台上发表,报告破解2048位RSA密钥所需的量子比特数可以大幅减少,现有的量子计算机就能做到。研究人员称,PeterShor早在1990年代就发现用量子计算机进行大数的因式分解是很容易的,但所需的量子比特数需要多达数百万,现有技术还制造不出此类规模的量子计算机。今天最先进的量子计算机只有数百个量子比特——如IBM的Osprey有433个量子比特。中国研究人员提出了一种优化方法,将所需的量子比特数减少到372个量子比特——这是现有技术能做到的,虽然中国还没有如此先进的量子计算机。知名加密学专家BruceSchneier在其博客上指出,中国研究人员提出的优化方法是基于PeterSchnorr最近发表的一篇受争议论文,Schnorr的算法在较大的系统上崩溃了,所以中国的方法是否成功还是未知,但至少IBM的研究人员可以测试下了。来源,来自:雷锋频道:@kejiqu群组:@kejiquchat投稿:@kejiqubot

封面图片

标题:深入浅出计算机组成原理」

标题:深入浅出计算机组成原理」简介:无论你想要向上学习计算机的底层知识,比如编译原理、操作系统、体系结构,还是想要向下学习数字电路、数字逻辑等内容,都要先掌握计算机组成原理。这门课不仅能让你对计算机体系有一个总纲的认识,当你选择研究更深入的领域时也大有裨益。那如何才能学会计算机组成原理呢?作为一名工程师,你应该明白,学习的关键是要搞懂原理、掌握本质、解决问题。而学习计算机组成原理,其实就是理解计算机是怎么运作的以及为什么要这么运作,在此基础上,我们才能又快又准地优化性能,提升效率链接:https://www.aliyundrive.com/s/1uDGovey335

封面图片

日本团队开发出“光量子计算机”运算纠错技术

日本团队开发出“光量子计算机”运算纠错技术日本东京大学等的研究团队日前在美国《科学》杂志上发表成果称,开发出能自行纠正“光量子计算机”运算错误的方法。“光量子计算机”是使用光的下一代计算机,这正是这种计算机所面临的最后课题。研究量子信息科学的东大教授古泽明表示:“原理层面的开发已完成。今后将迎来新的时代。”据悉,他们将在9月成立风险企业以推动成果转化。量子计算机使用信息的基本单位“量子比特”,即使是复杂的运算也能高速执行,但过程中容易出现运算错误。使用超导体或离子的计算机已开发出纠错功能,但需要大量量子比特和复杂的布线。此外还存在计算机体积变大和耗电量大的问题。团队此次开发出了高性能的光检测仪,成功创造出一种名为“GKP量子比特”的特殊光状态,它能在运算的同时纠错。包含大量光子的单个光信号工作原理与排列大量量子比特的状态相同,因此有望在计算机体积不增大的情况下提高运算能力。

封面图片

中国研究人员声称找到利用量子计算机破解RSA加密的方法,但是数学与量子领域科学家对此表示怀疑

中国研究人员声称找到利用量子计算机破解RSA加密的方法,但是数学与量子领域科学家对此表示怀疑最近几天,一群中国研究人员声称已经想出了一种方法来破解支撑当今大部分在线通信的RSA加密,这些问题得到了极大的缓解。人们普遍认为,量子计算机能够破解在线加密的可能性是未来十年或更长时间可能存在的危险。但来自中国多所顶尖大学和政府支持实验室的24名研究人员表示,他们的研究表明,使用已经可用的量子技术是可能的。到上周晚些时候,高等数学和量子力学交叉领域的一些研究人员对这一说法泼了冷水。Riverlane的Brierley说它“不可能工作”,因为中国研究人员假设量子计算机能够简单地同时运行大量计算,而不是试图通过应用系统的量子特性来获得优势。最早提出量子计算机破解加密方法的美国数学家彼得·肖尔预测,无法一次运行所有计算意味着量子计算机将需要“数百万年”才能运行论文中提出的计算.对于一些量子公司来说,中国关于在线加密的惊人声明表明该技术的重要时刻正在临近。但对于怀疑者来说,这项研究明显的不切实际将证明量子计算仍然是一项令人印象深刻的科学实验,而不是一项实用技术。——(节选)

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人