青岛大学研发的超灵敏触摸传感器能"感知"4英寸外的事物

青岛大学研发的超灵敏触摸传感器能"感知"4英寸外的事物过去几年来,在生产可弯曲、扭曲和折叠的电子产品方面取得了重大进展,从而产生了各种功能性可穿戴设备。可以理解的是,将下一代触摸传感器集成到电子人体皮肤中已成为一个重要的考虑因素,并有可能应用于机器人、健康和科技领域。集成了非接触式传感技术的电子皮肤可以让许多人受益。例如,能够挥动手指或做出手势来启动软件将非常方便--尤其是对于那些无法手持设备的人来说。此外,视觉障碍者也可以安全地绕过障碍物。当然,这种功能可以扩展到任何连接到物联网(IoT)的设备。目前的大多数触摸传感器都依赖于直接触摸物体,从而在传感器中产生可测量的物理变形和相应的力。然而,根据青岛大学研究人员的一项新研究,我们可能离非接触式传感更近了一步。他们开发出了一种灵敏度极高的触摸传感器,无需直接接触被检测物体即可工作。该研究的通讯作者之一李新林说:"为了实现更高的灵敏度和多功能性,我们开发出了新型复合薄膜,它具有令人惊讶且非常有用的电学特性。"为了制作复合薄膜,研究人员将少量氮化石墨碳(GCN)与聚二甲基硅氧烷(PDMS)3D打印成网格状。令人惊讶的是,他们发现将这两种具有高介电常数(衡量在电场中存储电能的能力)的材料结合在一起后,材料的介电常数很低,因此传感器对电场更加敏感。(a)手指接近传感器的示意图;(b)手指与传感器之间的距离在0至150毫米之间时,电容变化与距离之间的关系研究人员用自己的手指作为被检测物体对网格的功能进行了测试,发现网格能感应到0.5至10厘米(0.2至3.9英寸)远的手指,而且无需实际触摸,就能清晰地将手指识别为三维物体。在圆桌和三棱镜上进行测试后,传感器可以准确识别和区分不同的形状和动作。李说:"在灵敏度、响应速度和多次使用后的稳定性方面,性能都非常出色。这为可穿戴设备和电子皮肤领域带来了新的可能性。"在传感器取得成功性能之后,研究人员将其集成到一块印刷电路板上,创建了一个能够远程监控人体运动的统一系统。包含新型传感器的电子皮肤贴在手腕上,确保与专门用于捕捉物体三维形状的设备持续连接,并利用4G技术将物体的三维形状实时无线传输到智能手机、智能手表和电脑上。研究人员计划改进传感技术,以便大规模生产。他们还将探索检测形状和运动以外的可能性。这项研究发表在《先进材料科学与技术》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1421481.htm手机版:https://m.cnbeta.com.tw/view/1421481.htm

相关推荐

封面图片

大阪大学研究人员开发出柔韧可弯曲的光学传感器 揉成一团也能用

大阪大学研究人员开发出柔韧可弯曲的光学传感器揉成一团也能用在最近发表于《先进材料》(AdvancedMaterials)上的一项研究中,大阪大学科学与工业研究所(SANKEN)的研究人员在一种超薄柔性薄片上开发出了一种光学传感器,这种传感器可以弯曲而不会断裂。事实上,这种传感器非常灵活,即使被揉成一团也能正常工作。在照相机中,光学传感器是感应穿过镜头的光线的装置,类似于人眼的视网膜。传感器设计的创新"传统的光学传感器是使用无机半导体和铁电材料制造的,"该研究的主要作者ReiKawabata说。"这使得传感器变得僵硬,无法弯曲。为了避免这个问题,我们研究了另一种探测光的方法。"与传统的光传感器不同,研究人员使用的是印在超薄聚合物基底(小于5微米)上的微小碳纳米管光电探测器阵列。当暴露在光线下时,碳纳米管会发热,形成热梯度,然后产生电压信号。在印刷过程中掺入化学载体可进一步提高纳米管的灵敏度。利用这些纳米管,可以测量可见光以及与热或分子有关的红外光。用于宽带红外热分析的集成有机电路的超灵活无线成像仪利用片状光学传感器对光、热和分子进行探测和成像。无线技术集成除了碳纳米管传感器,聚合物基板上还印有有机晶体管,将电压信号组织成图像信号。要读取这种信号,计算机不需要通过电线与传感器进行物理连接。取而代之的是一个无线蓝牙模块。该研究的资深作者荒木祯平说:"有了这套无线系统,我们的成像仪就能附着在柔软和弯曲的物体上,对其表面或内部进行分析,而不会损坏它们。"集成了碳纳米管光电探测器和有机晶体管的片式光学传感器研究人员制作了薄片型光学传感器的原型,并测试了其感应人体手指或电线等物体的热量以及流经管道的葡萄糖的能力。他们发现,这种光学传感器在很宽的波长范围内都具有很高的灵敏度。此外,在室温和大气条件下,测试表明它具有很高的弯曲耐久性,即使被揉皱也能正常工作。这种无线测量系统和薄片型光学传感器的独特优势将为执行许多任务(如无需采样即可评估液体质量)带来更简单的新方法。研究人员认为,它在无损成像、可穿戴设备和软机器人等许多应用领域都大有可为。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1419657.htm手机版:https://m.cnbeta.com.tw/view/1419657.htm

封面图片

"电子蜘蛛丝"传感器:利用环保技术实现生物电子学革命

"电子蜘蛛丝"传感器:利用环保技术实现生物电子学革命研究人员开发出了一种制造自适应生态友好型传感器的方法,这种传感器可以直接且不易察觉地印在各种生物表面上,无论是手指还是花瓣。资料来源:剑桥大学这种方法由剑桥大学的研究人员开发,其灵感来自蜘蛛丝,蜘蛛丝可以粘附在各种表面上。这些"蜘蛛丝"还结合了生物电子学,因此可以在"网"上添加不同的传感功能。先进的传感器技术这种纤维比人的头发至少小50倍,重量非常轻,研究人员直接将其打印在蒲公英蓬松的种子头上,而不会破坏其结构。印在人的皮肤上时,纤维传感器会紧贴皮肤并暴露出汗孔,因此佩戴者不会察觉到它们的存在。对印制在人体手指上的纤维进行的测试表明,它们可用作连续的健康监测器。这种低废物、低排放的生命结构增强方法可用于从医疗保健和虚拟现实到电子纺织品和环境监测等一系列领域。今天(5月24日),《自然电子学》杂志报道了这一研究成果。研究人员开发出了一种制造自适应生态友好型传感器的方法,这种传感器可以直接且不易察觉地印在各种生物表面上,无论是手指还是花瓣。这种比人类头发至少小50倍的纤维非常轻巧,研究人员可以直接将其打印到蒲公英蓬松的种子头上,而不会破坏其结构。资料来源:剑桥大学虽然人体皮肤非常敏感,但在皮肤上增加电子传感器可以从根本上改变我们与周围世界的互动方式。例如,直接印在皮肤上的传感器可用于持续健康监测、了解皮肤感觉,或在游戏或虚拟现实应用中改善"真实"感觉。可穿戴技术面临的挑战虽然嵌入传感器的可穿戴技术(如智能手表)已广泛普及,但这些设备可能会让人感到不舒服和碍眼。它们还会抑制皮肤的内在感觉。"如果你想准确地感知皮肤或树叶等生物表面上的任何东西,那么设备与表面之间的接口就至关重要,"领导这项研究的剑桥大学工程系教授黄艳艳(YanYanSheryHuang)说。"我们还希望生物电子器件对用户来说是完全不可感知的,这样它们就不会以任何方式干扰用户与世界的互动方式,而且我们希望它们是可持续的、低废料的。"研究人员开发出了一种制造自适应环保型传感器的方法,这种传感器可以直接且不易察觉地印在各种生物表面上,无论是手指还是花瓣。当印制在人体皮肤上时,纤维传感器会紧贴皮肤并暴露出汗孔,因此佩戴者不会察觉到它们的存在。对印制在人类手指上的纤维进行的测试表明,它们可用作连续健康监测器。资料来源:剑桥大学柔性电子产品的创新制造可穿戴传感器有多种方法,但这些方法都有缺点。例如,柔性电子元件通常印在塑料薄膜上,不允许气体或湿气通过,因此就像用保鲜膜包裹皮肤一样。其他研究人员最近开发出了可透气的柔性电子元件,就像人造皮肤一样,但这些元件仍然会干扰正常感觉,而且依赖于能源和废物密集型制造技术。三维打印是生物电子学的另一条潜在途径,因为它比其他生产方法浪费更少,但会产生较厚的装置,从而干扰正常行为。旋转电子纤维可制造出用户无法察觉的装置,但灵敏度和复杂程度不高,而且很难转移到相关物体上。现在,这个由剑桥大学领导的团队开发出了一种制造高性能生物电子器件的新方法,通过直接在各种生物表面(从指尖到蒲公英蓬松的种子头)上打印,这些电子器件可以定制。他们的技术灵感部分来源于蜘蛛,它们用最少的材料创造出适应环境的复杂而坚固的网状结构。研究人员用PEDOT:PSS(一种生物相容性导电聚合物)、透明质酸和聚氧化乙烯纺出了生物电子"蜘蛛丝"。这种高性能纤维是在室温下用水基溶液制成的,因此研究人员能够控制纤维的"可纺性"。随后,研究人员设计了一种轨道纺丝方法,使纤维能够变形为生物表面,甚至是指纹等微观结构。在人类手指和蒲公英种子头等表面对生物电子纤维进行的测试表明,这些纤维具有高质量的传感器性能,同时还不会被宿主察觉。论文第一作者AndyWang说:"我们的纺丝方法可以让生物电子纤维在微观和宏观尺度上遵循不同形状的解剖结构,而无需任何图像识别。这为如何制造可持续电子器件和传感器开辟了一个完全不同的角度。这是一种更容易制造大面积传感器的方法。"未来方向和商业化大多数高分辨率传感器都是在工业洁净室中制造的,需要在多步骤、高能耗的制造过程中使用有毒化学品。而剑桥大学开发的传感器可以在任何地方制造,所耗费的能源仅为普通传感器的一小部分。生物电子纤维可以修复,在使用寿命结束后只需简单清洗即可,产生的废料不到一毫克:相比之下,一般一次洗衣产生的纤维废料在600至1500毫克之间。"利用我们简单的制造技术,我们几乎可以把传感器放在任何地方,并在需要的时候随时随地对它们进行维修,而不需要大型印刷机或集中的制造设施,"Huang说。"这些传感器可以在需要的地方按需制造,并且产生的废物和排放物极少。"研究人员表示,他们的设备可应用于健康监测、虚拟现实、精准农业和环境监测等领域。未来,还可以将其他功能材料融入到这种纤维打印方法中,建立集成纤维传感器,以增强生命系统的显示、计算和能量转换功能。在剑桥大学商业化部门"剑桥企业"的支持下,这项研究正在实现商业化。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1432214.htm手机版:https://m.cnbeta.com.tw/view/1432214.htm

封面图片

据称三星已开始研发1英寸影像传感器 但预计2025年前不会面世

据称三星已开始研发1英寸影像传感器但预计2025年前不会面世根据可靠消息,三星终于开始研发1英寸主摄像头传感器。目前还没有太多的信息,但该消息来源确实分享了一些关键规格,这表明该传感器将能够提供一些重要的摄影功能。在另一条推文中,消息人士分享了三星新传感器的规格:1/0.98、2亿像素、0.8μmH/VDPAF、4倍ISZ。现在,1英寸的手机传感器并不完全是1英寸,而且考虑到该公司一直专注于提供高像素,2亿像素的分辨率也是非常合理的。遗憾的是,我们不会在即将推出的GalaxyS24Ultra上看到这种传感器。过去有传言称,GalaxyS25系列将全面升级摄像头,因此如果这一传言属实,GalaxyS25Ultra将配备这一摄像头。这就是我们目前掌握的所有细节,但考虑到三星通常会在设备上搭载传感器之前就发布消息,我们可能会在明年某个时候看到官方发布更多细节。...PC版:https://www.cnbeta.com.tw/articles/soft/1401887.htm手机版:https://m.cnbeta.com.tw/view/1401887.htm

封面图片

光大证券:关注传感器的技术路线与行业进展

光大证券:关注传感器的技术路线与行业进展光大证券研报指出,第二代Optimus产品性能大幅进阶,对传感器的使用出现边际增加。展望2024年,随着智能化进步,人形机器人与场景交互的复杂度提升,将带动传感器的需求增加。柔性触觉传感器的关键优势在于可塑性强,工艺简单,可实现对指尖等不规则形状的包裹。目前单点式柔性触觉传感器已较为成熟,高分辨率、高灵敏度的阵列式柔性触觉传感器将成为下一阶段的发展方向。建议关注传感器的技术路线与行业进展。个股可关注:(1)六维力传感器:柯力传感、东华测试等;(2)触觉传感器:汉威科技、申昊科技等。

封面图片

苹果智能戒指可触摸虚拟事物 需配合 Vision Pro 头显

苹果智能戒指可触摸虚拟事物需配合VisionPro头显根据美国商标和专利局(USPTO)近日公示的清单,苹果公司获得了一项关于智能戒指/指套的专利,希望在空间计算中让佩戴者触摸和感受虚拟事物。这项专利名称为《配有传感器和触觉反馈、佩戴在手指上的设备》,每个指尖上都配有传感器,可以检测用户手部动作,从而更好地和虚拟现实世界内容交互。用户佩戴苹果VisionPro和此类可穿戴设备,有人在虚拟世界向你抛出一个虚拟球,指尖的触觉传感器就能模拟出接球的感觉。

封面图片

想监测一座正在喷发的火山吗?这种传感器可以做到这一点

想监测一座正在喷发的火山吗?这种传感器可以做到这一点航空航天、能源、交通和国防--所有这些极端环境在开发监测物理和机械参数(如压力、力、应变和加速度)的传感器时构成了一种挑战。为了在这些环境中运行,传感器必须能够承受非常高的温度和恶劣的条件。例如,航空涡轮机械产生的温度在167°F(75°C)和932°F(500°C)之间。核反应堆在572°F(300°C)和1832°F(1000°C)之间运行。而石化行业使用的管道中的温度从接近北极的寒冷到沙漠的炙热不等。休斯顿大学的研究人员已经开发出一种压电传感器,它可以耐受这些类型的极端情况,同时保持敏感和可靠。该研究的通讯作者Jae-HyunRyou说:"能够容忍这种极端环境的高灵敏度、可靠和耐用的传感器对于这些应用的效率、维护和完整性是必要的。"压电性是指固体材料在受到机械压力时积累的电荷。压电传感器通过将压力、加速度或应变转换为电荷来测量它们的变化。该研究小组已经开发了一种氮化镓(GaN)压电压力传感器,旨在用于极端环境中。然而,他们发现该传感器的灵敏度会在温度高于662°F(350°C)时下降。尽管氮化镓是一种宽带隙半导体,但研究人员推测,灵敏度的下降是由于带隙不够宽。带隙是激发电子并产生导电性所需的最小能量。因此,研究人员使用氮化铝(AlN)创建了一个新的传感器。研究人员比较了氮化铝和氮化镓传感器的性能,把它们放在一个管式炉中,以100度的增量将热量从212°F(100℃)增加到1652°F(900℃),随后使用压力调节的氮气来评估它们的压力感应能力。与GaN传感器相比,AlN传感器被发现具有更宽的带隙,可以在更高的温度下工作,同时仍然提供快速、稳定和可靠的测量。事实上,它可以在高达1652°F(900°C)的温度下工作,这是喷发的黑火山熔岩的温度,是地球上最热的熔岩类型。该研究的主要作者Nam-InKim说:"传感器在大约1000°C[1832°F]下工作证明了这一假设,这是压电传感器中的最高工作温度。"由于氮化铝的物理特性,它不仅可以承受高温,而且还具有很高的抗辐射能力,并能抵抗有机溶剂、海水、紫外线以及弱酸和弱碱。现在,研究人员已经在实验室里证明了他们的AlN压电传感器的高耐用性,他们计划在真实世界的环境中进行测试。"我们的计划是在几个恶劣的环境中使用该传感器,"Ryou说。"例如,在核电站进行中子暴露,在高压下测试氢气储存。氮化铝传感器由于其稳定的材料特性,可以在中子暴露的大气中和非常高的压力范围内运行。"但研究人员把目光投向了重工业以外的其他应用。他们预见到将他们的传感器纳入用于健康监测的可穿戴设备,或用于精确感应的软机器人。该研究发表在《先进功能材料》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1360981.htm手机版:https://m.cnbeta.com.tw/view/1360981.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人