TIRA空间观测雷达捕捉到ERS-2在空中翻滚的最后图像

TIRA空间观测雷达捕捉到ERS-2在空中翻滚的最后图像2024年2月19日卫星ERS-2的雷达图像:太阳能模块完好无损。资料来源:弗劳恩霍夫FHR欧空局的ERS-2号卫星在执行了极其成功的任务和近30年的在轨运行后,于2024年2月21日欧洲中部时间下午6时17分(协调世界时下午5时17分)左右进入大气层。在此之前,弗劳恩霍夫高频物理和雷达技术研究所(FHR)的研究人员已经对欧空局的这颗卫星进行了大约一周的多次测量。欧洲中部时间2月21日上午8点左右,即重返大气层前约10个轨道,TIRA的34米天线系统记录下了ERS-2在天空中翻滚的最后一幅图像。有趣的是,ERS-2的太阳能电池板当时似乎已经弯曲,部分与卫星的其他部分分离。2024年2月20日卫星ERS-2的雷达图像:弯曲的太阳能模块。资料来源:弗劳恩霍夫FHR弗劳恩霍夫FHR的雷达专家FelixRosebrock说:"在我们的数据中,我们一方面可以看到太阳能电池板有明显的弯曲,另一方面也可以看到可能由快速失控的'飘动'造成的伪影。这一点尤为重要,因为在重返大气层过程中,结构的变化首次被图像捕捉到。"2024年2月21日卫星ERS-2的雷达图像:太阳能模块损坏。资料来源:弗劳恩霍夫FHR在预测卫星重返大气层的轨迹时,分析人员一直将其视为刚性物体。如果ERS-2号卫星的太阳能电池板在较早阶段就已经松动,那么卫星的轨道可能会受到大气摩擦力不可预测的影响。专家们目前正在分析ERS-2返回大气层过程中收集到的数据,以确认太阳能电池板的早期损坏情况。如果这与再入大气层的时间略晚于预测有关,那么这项研究将有助于改进对未来自然再入大气层的预测。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1421801.htm手机版:https://m.cnbeta.com.tw/view/1421801.htm

相关推荐

封面图片

太阳轨道飞行器(SolO)捕捉到水星穿越太阳的壮观图像

太阳轨道飞行器(SolO)捕捉到水星穿越太阳的壮观图像虽然水星凌驾于太阳的视频令人叹为观止。这颗小行星甚至显示为一个黑色的圆盘,与我们太阳系所围绕的明亮的太阳星相映成趣。不过,科学家们从这段简短的记录中收集到的数据,对于我们未来如何利用凌日方法研究系外行星极为重要。不过,这段视频不仅仅是关于观看水星在太阳面前经过。太阳轨道器拍摄的视频让我们直接看到了这颗小行星在经过构成太阳大气层的不同层次时的情况。科学家们仍在努力了解这种大气层。此外,通过视频捕捉水星过境也为科学家提供了新的数据,他们可以用来校准航天器。这是因为当水星在太阳前面过境时,它在视频中产生了一个黑盘,这个完全黑色的圆盘提供了机会让天文学家对点扩散函数进行补偿,也就是当记录仪器在不该记录的地方记录了亮度。因为不应该有来自水星的亮度,所以科学家可以分析并希望在未来的观测中删除它。因此,太阳轨道器不仅为我们提供了罕见的水星过境太阳的视频,而且还捕捉到了天文学家可以用来改进航天器的重要数据,使我们能够更可靠地研究太阳和其他恒星。帕克太阳探测器也在努力研究太阳,甚至要成为第一个接触太阳大气层的航天器。...PC版:https://www.cnbeta.com.tw/articles/soft/1345633.htm手机版:https://m.cnbeta.com.tw/view/1345633.htm

封面图片

NASA太阳动力学观测站捕捉到从太阳爆发的强烈耀斑

NASA太阳动力学观测站捕捉到从太阳爆发的强烈耀斑美国宇航局的太阳动力学观测站在2023年3月28日拍摄了这张太阳耀斑的图像--从太阳右下方的明亮闪光中可以看出。该图像显示了极紫外光的一个子集,突出了耀斑中的极热物质,其颜色为茶色。资料来源:NASA/SDO太阳耀斑是来自太阳表面的一种突然的、强烈的辐射爆发。它是由储存在太阳大气层中的磁能快速释放造成的。太阳耀斑可以在地球的磁场和高层大气中造成重大干扰,从而影响通信系统、电网和卫星。它们根据X射线的亮度进行分类,被评为C级、M级或X级,其中X级是最强烈的。这个太阳动力学观测站的动画显示了它在地球上方朝向太阳的情况。SDO旨在帮助我们了解太阳对地球和近地空间的影响,通过在小的空间和时间尺度上以及在许多波长上同时研究太阳大气。资料来源:美国宇航局/戈达德太空飞行中心概念图像实验室美国宇航局的太阳动力学观测站(SDO)是一个在2010年发射的航天器,用于研究太阳及其对地球的影响。SDO的任务是通过研究太阳大气和磁场,帮助科学家了解太阳对地球和近地空间的影响。SDO配备了三台科学仪器,以多种波长的光持续观测太阳,使科学家能够以前所未有的细节研究太阳的动态。SDO的数据在提高我们对空间天气及其对地球的影响的理解方面发挥了作用。...PC版:https://www.cnbeta.com.tw/articles/soft/1352221.htm手机版:https://m.cnbeta.com.tw/view/1352221.htm

封面图片

NASA火星轨道飞行器捕捉到红色星球大气层的最新景象

NASA火星轨道飞行器捕捉到红色星球大气层的最新景象奥德赛号最近拍摄到了前所未见的红色星球大气层图像,为科学家和公众提供了火星弯曲地平线的惊人新景象。航天器从大约400公里的高度拍摄了这些照片,这与国际空间站(ISS)围绕我们"苍白蓝点"(地球的绰号)运行的高度相同。美国国家航空航天局的科学家们使用了奥德赛号上的红外相机,即热辐射成像系统(THEMIS)。该相机对温度的敏感度使NASA能够绘制冰、岩石、沙子和尘埃的形成以及温度变化图,但通常仅限于地表观测。THEMIS安装在轨道器上的一个固定位置,因此它通常直指火星表面。为了获得火星大气层的新视角,JPL的NASA工程师们与洛克希德-马丁航天公司(奥德赛的建造公司)合作,为航天器制定了一个新计划。NASA解释说,THEMIS无法转动,因此整个轨道器需要调整位置。航天器被旋转了近90度,以确保太阳仍能为其太阳能电池板提供能量,而不会损坏其他敏感设备。由于计划中的旋转,轨道器的天线短暂地偏离了地球,导致在观测阶段通信中断了几个小时。奥德赛号拍摄的全景图像显示了火星弯曲的表面,构成火星稀薄大气层的朦胧云层和尘埃向各个方向延伸。这一新景象不仅令太空爱好者叹为观止,还将帮助美国宇航局的科学家们获得对火星大气层的新认识。在"奥德赛"号偏离与火星表面相关的惯常位置的同时,美国宇航局还拍摄了火卫一的新图像。这颗直径只有26千米的微小火星卫星是在不同的角度和光照条件下拍摄的,可以提供有关其成分和物理特性的新数据。这些数据可能有助于最终解决关于火卫一起源的争论,因为该卫星要么是被火星引力捕获,要么是在一次巨大的行星撞击后从火星表面弹出。...PC版:https://www.cnbeta.com.tw/articles/soft/1401295.htm手机版:https://m.cnbeta.com.tw/view/1401295.htm

封面图片

美国国家航空航天局的大气波实验首次捕捉到中间层图像

美国国家航空航天局的大气波实验首次捕捉到中间层图像绘制全球中间层重力波特性的AWE图。资料来源:美国国家航空航天局AWE正在地球上空54英里(87公里)的中顶区域对大气重力波(AGW)进行全球范围的观测。一旦研究人员能够对AWE的观测结果进行分析,他们就能够研究AGW是如何由地球上的天气事件形成并在地球大气层中传播的。这也将有助于我们了解AGW在大气上层(即电离层-热层-中气层)中的广泛作用及其对空间天气的影响。太阳动力学实验室(SDL)的AWE地面系统和任务运行经理佩德罗-塞维利亚(PedroSevilla)与犹他州立大学科学院的名誉首席研究员迈克尔-泰勒(MichaelTaylor)和首席研究员路德格-舍利斯(LudgerScherliess)一起,观察从国际空间站传输到位于SDL的AWE任务运行中心的AWE仪器的一些首批实时图像。图片来源:SDL/AllisonBills美国国家航空航天局(NASA)的大气波实验(AWE)是空间研究领域的一项前沿举措,重点研究大气重力波。这些波在地球大气层的动力学中起着至关重要的作用,尤其是在中间层、电离层和热层等上层。AWE在国际空间站(ISS)上的独特有利位置运行。AWE的主要目标之一是观测和分析距离地球表面约54英里(87公里)的中顶区域的大气重力波(AGW)。通过研究这些波,AWE旨在加深我们对地球表面的天气事件如何产生这些波,以及这些波如何通过大气层较高区域传播并对其产生影响的理解。这项研究对于理解AGWs对电离层-热层-大气层系统的更广泛影响至关重要,特别是在空间天气效应方面,这对卫星运行和通信系统都有影响。AWE由位于洛根的犹他州立大学的LudgerScherliess领导,由位于马里兰州格林贝尔特的美国宇航局戈达德太空飞行中心的探索者项目办公室管理。犹他州立大学的空间动力学实验室建造了AWE仪器,并提供任务运行中心。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1403305.htm手机版:https://m.cnbeta.com.tw/view/1403305.htm

封面图片

NASA连续捕捉到强烈的X2.8/1.4级太阳耀斑

NASA连续捕捉到强烈的X2.8/1.4级太阳耀斑2024年5月27日,美国国家航空航天局的太阳动力学天文台拍摄到了这幅太阳耀斑的图像,图像中的太阳边缘闪烁着明亮的光芒,内嵌的地球图像显示了耀斑的规模。图像显示的是极紫外光的一个子集,它突出显示了耀斑中的极热物质,并被染成红色。图片来源:NASA/SDO太阳耀斑是太阳大气中积聚的磁能突然释放时产生的强烈辐射。它们发出的能量覆盖整个电磁波谱,从无线电波到伽马射线。这些耀斑可持续数分钟到数小时不等,通常伴随着太阳物质的抛射,即日冕物质抛射(CMEs)。2024年5月29日,美国国家航空航天局的太阳动力学天文台捕捉到了这张太阳耀斑的图像--从左侧的亮光中可以看到。图像显示的是极紫外光的一个子集,它突出显示了耀斑中的极热物质,并被染成橙色。图片来源:NASA/SDO太阳耀斑的强度是根据卫星(如GOES航天器)观测到的X射线波长亮度来划分的。这些等级被划分为A、B、C、M或X级,其中A级最弱,X级最强。每个等级代表能量输出增加十倍,在每个等级中,使用从1到9的更细刻度来提供更多细节。例如:A级耀斑最小,对地球几乎没有影响。B级耀斑稍大一些,但总体上仍然微不足道。C级耀斑是中小型耀斑,对地球几乎没有明显影响。M级耀斑会在两极造成短暂的无线电停电和轻微的辐射风暴,可能危及宇航员。X级耀斑是规模最大、威力最强的耀斑,能够造成全地球范围的无线电停电和持久的辐射风暴。耀斑的分类,如X2.8,表示X级耀斑,其亮度在用于测量X射线的对数刻度上为2.8。这个等级对于了解和预测太阳耀斑对地球周围空间环境的潜在影响以及可能受到太阳辐射水平增加影响的各种技术和系统至关重要。这个太阳动力学天文台的动画展示了它在地球上空面向太阳的样子。太阳动力学天文台旨在通过在小尺度空间和时间范围内同时以多种波长研究太阳大气,帮助我们了解太阳对地球和近地空间的影响。图片来源:NASA/戈达德太空飞行中心概念图像实验室美国国家航空航天局的太阳动力学天文台(SDO)是一项致力于了解太阳对地球及其近地环境影响的任务。SDO于2010年2月11日发射升空,是NASA"与星共存"(LWS)计划的一部分,该计划旨在研究直接影响生命和社会的日地相连系统的各个方面。SDO的主要目标是深入了解太阳大气层及其磁场,了解太阳大气层如何储存和释放能量(如太阳耀斑和日冕物质抛射),以及测量影响地球生命及其技术系统的太阳变化。通过以多种波长对太阳进行近乎连续的高分辨率观测,该观测站在提高我们预报空间天气事件的能力方面发挥着至关重要的作用。观测站配备了三台高灵敏度仪器:大气成像组件(AIA)每12秒钟捕捉多个波长的太阳大气详细图像,从而全面了解日冕及其动态。日震和磁场成像仪(HMI)观测太阳表面和磁场,提供有助于了解太阳内部结构和磁场活动的数据。极端紫外线可变性实验(EVE)以前所未有的精度测量太阳的紫外线输出,这对于了解地球大气层和空间环境的变化至关重要。SDO的数据是我们了解太阳复杂多变的行为所不可或缺的,并极大地改进了空间天气预报。编译自/scitechdaily...PC版:https://www.cnbeta.com.tw/articles/soft/1433006.htm手机版:https://m.cnbeta.com.tw/view/1433006.htm

封面图片

哈勃捕捉到令人眼花缭乱的NGC 6638星团图像

哈勃捕捉到令人眼花缭乱的NGC6638星团图像据BGR报道,虽然哈勃太空望远镜的“继任者”詹姆斯·韦伯太空望远镜已经开始全面运行,但前者仍未退役。事实上,哈勃太空望远镜的最新图像包括一个令人震惊的星团,与我们所见过的任何东西都不同。这个星团是NGC6638,一个位于人马座的星团。这张新图像是使用哈勃的第三代广域照相机和高级观测相机拍摄的。在哈勃创建之前,几乎不可能看清这个星团中的单颗恒星。那是因为这个星团包含了如此密集的恒星。不过现在,由于哈勃最新的星团图像,人们可以很好地看清这些恒星。通常情况下,从地球上看这些密集的星团时,你必须透过大气层看。这可能会使你难以看到星团内恒星的更多细节。然而,哈勃在离地表约340英里处绕地球运行。因此,它不需要透过大部分大气层的阴霾来观察。这台望远镜可能已经有30多年的历史了,但它仍然能够捕捉到图像。同样,它没有像詹姆斯·韦伯太空望远镜的第一张照片那样多的细节。但是,它们的设计都是为了观察不同的事物。而且,有了哈勃,如果天文学家们发现任何看起来特别有趣的东西,总是可以把它添加到詹姆斯·韦伯的任务列表中。美国宇航局和共同管理哈勃的欧空局在8月初发布了这一最新图像。随着詹姆斯·韦伯和哈勃继续观察宇宙,我们无疑会看到来自两者的更多惊人的照片。天文学家们计划继续使用哈勃与詹姆斯·韦伯望远镜一起捕捉像这样的大量数据,并发现更多关于我们宇宙的起源。PC版:https://www.cnbeta.com/articles/soft/1303049.htm手机版:https://m.cnbeta.com/view/1303049.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人