天文学家揭开宇宙最重黑洞双星之谜

天文学家揭开宇宙最重黑洞双星之谜两个超大质量黑洞的合并是一个早已被预测到的现象,尽管从未被直接观测到过。天文学家提出的一个理论是,这些系统的质量如此之大,以至于它们耗尽了宿主星系中驱动合并所需的恒星物质。利用双子座北望远镜的档案数据,一个天文学家小组发现了一个双黑洞,为这一观点提供了有力的证据。据研究小组估计,这个双黑洞的质量是太阳质量的280亿倍,是迄今为止测量到的最重的双黑洞。这次测量不仅为双星系统的形成及其宿主星系的历史提供了宝贵的背景资料,而且还支持了一个由来已久的理论,即超大质量黑洞双星的质量在阻止超大质量黑洞合并方面起着关键作用。资料来源:NOIRLab/NSF/AURA/J.daSilva/M.Zamani几乎每个大质量星系的中心都有一个超大质量黑洞。当两个星系合并时,它们的黑洞会形成一对双星,这意味着它们处于相互束缚的轨道上。据推测,这些双星最终会合并,但这一现象从未被观测到过[1]。几十年来,天文学家们一直在讨论这样的事件是否可能发生。在最近发表于《天体物理学报》(TheAstrophysicalJournal)的一篇论文中,一个天文学家小组提出了对这一问题的新见解。一个天文学家小组利用由美国国家科学基金会NOIRLab负责运行的双子座北望远镜(国际双子座天文台的一半)提供的档案数据,测量出了迄今发现的最重的一对超大质量黑洞。两个超大质量黑洞的合并是一种早已被预测到的现象,但从未被观测到过。这对超大质量黑洞提供了一些线索,说明为什么宇宙中发生这种事件的可能性如此之小。双子座北区前所未有的洞察力研究小组利用夏威夷双子座北望远镜(由美国国家科学基金会资助的NOIRLab运行的国际双子座天文台的二分之一)的数据,分析了位于椭圆星系B20402+379内的一个超大质量黑洞双星。这是迄今为止唯一一个被分辨得足够详细,可以分别看到两个天体的超大质量黑洞双星,[2]而且它还保持着迄今为止直接测量到的最小间隔记录--仅仅24光年[3]。虽然如此接近的分离预示着强大的合并,但进一步的研究发现,这对天体已经在这个距离上停滞了30多亿年,这不禁让人产生疑问:是什么阻碍了合并?双黑洞合并的挑战为了更好地了解这个系统的动态及其停止的合并,研究小组研究了双子座北区的双子座多目标摄谱仪(GMOS)的档案数据,这些数据使他们能够确定黑洞附近恒星的速度。"GMOS出色的灵敏度使我们能够测绘出恒星在靠近星系中心时的速度,"论文共同作者、斯坦福大学物理学教授罗杰-罗曼尼(RogerRomani)说。"有了这些,我们就能推断出居住在那里的黑洞的总质量。"据研究小组估计,这对双星的质量是太阳质量的280亿倍,是迄今测量到的最重的双黑洞。这一测量结果不仅为双星系统的形成及其宿主星系的历史提供了宝贵的背景资料,而且还支持了一个由来已久的理论,即超大质量双黑洞的质量在阻止潜在合并中起着关键作用[4]。"为国际双子座天文台提供服务的数据档案蕴藏着一座尚未开发的科学发现金矿,"国家科学基金会国际双子座天文台项目主任马丁-斯蒂尔说,"对这个极端超大质量双黑洞的质量测量是一个令人敬畏的例子,说明了探索这一丰富档案的新研究可能产生的影响。"二进制系统的形成与未来了解这个双星是如何形成的,有助于预测它是否以及何时会合并--一些线索表明,这对双星是通过多个星系合并形成的。首先,B20402+379是一个"化石星系团",这意味着它是整个星系团的恒星和气体合并成一个大质量星系的结果。此外,两个超大质量黑洞的存在,加上它们巨大的总质量,表明它们是由多个星系的多个较小黑洞合并而成的。星系合并后,超大质量黑洞不会正面相撞。相反,当它们进入一个有束缚的轨道时,就会开始互相弹射。它们每经过对方一次,能量就会从黑洞传递到周围的恒星。随着它们能量的流失,这对黑洞被越拖越近,直到相距仅有一光年时,引力辐射占据上风,它们才会合并。这一过程已经在成对恒星质量的黑洞中被直接观测到--有史以来的第一次记录是在2015年通过引力波的探测--但从未在超大质量的双星中观测到过。停滞不前的合并与未来联合的可能性通过对该星系巨大质量的新了解,研究小组得出结论,需要有数量特别多的恒星才能减缓双星轨道的速度,使它们如此接近。在这个过程中,黑洞似乎甩掉了它们附近几乎所有的物质,使得星系核心缺少恒星和气体。由于没有更多的物质来进一步减缓这对天体的轨道,它们的合并在最后阶段停滞了。罗曼尼说:"通常情况下,黑洞对较轻的星系似乎有足够的恒星和质量来驱动两者迅速结合在一起。由于这对黑洞非常重,因此需要大量恒星和气体来完成这项工作。但是这对黑洞已经将中央星系中的这些物质清除干净,使它停滞不前,可供我们研究。"这对天体究竟会克服停滞状态,最终以数百万年的时间尺度合并,还是永远继续在轨道上徘徊,目前尚无定论。如果它们真的合并,产生的引力波将比恒星质量的黑洞合并产生的引力波强大一亿倍。这对天体有可能通过另一次星系合并来征服最后的距离,这将为星系注入更多的物质,或者有可能是第三个黑洞,从而使这对天体的轨道慢到足以合并。不过,鉴于B20402+379是一个化石星系团,另一个星系合并的可能性不大。"我们期待着对B20402+379的内核进行后续调查,我们将研究其中存在多少气体,"论文第一作者、斯坦福大学本科生TirthSurti说。"这应该能让我们更深入地了解超大质量黑洞最终能否合并,或者它们是否会作为双星搁浅。"说明虽然有证据表明超大质量黑洞之间的距离只有几光年,但似乎没有一个黑洞能够跨越这个最终距离。关于这种事件是否可能发生的问题被称为"最终-秒差距问题",几十年来一直是天文学家们讨论的话题。以前曾对含有两个超大质量黑洞的星系进行过观测,但在这些情况下,它们相距数千光年--太远了,不可能像在B20402+379中发现的双星那样处于相互结合的轨道上。其他黑洞动力源的距离可能更小,不过这些都是通过间接观测推断出来的,因此最好归类为候选双星。这一理论最早是由贝格尔曼等人于1980年提出的,根据数十年来对星系中心的观测,这一理论一直被认为是存在的。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1422216.htm手机版:https://m.cnbeta.com.tw/view/1422216.htm

相关推荐

封面图片

双星接触所形成的黑洞 天文学家记录撼动宇宙的宇宙碰撞

双星接触所形成的黑洞天文学家记录撼动宇宙的宇宙碰撞将他们的观察结果与双星演化的理论模型相比较,他们发现,在最适合的模型中,目前被喂养的恒星将成为一个黑洞,并将喂养其伴星。存活下来的恒星将在不久之后成为一个黑洞。这些黑洞将在短短几百万年内形成,但随后将相互环绕数十亿年,然后以如此大的力量相撞,产生引力波--时空结构中的涟漪--理论上可以用地球上的仪器探测到。该研究的主要作者、博士生马修-里卡德(UCL物理与天文学)说:"由于引力波探测器Virgo和LIGO的存在,在过去几年里已经探测到了几十个黑洞合并。但是到目前为止,我们还没有观察到那些被预测会坍缩成这种大小的黑洞并在时间尺度上短于甚至大致与宇宙年龄相当的恒星。我们的最佳拟合模型表明这些恒星将在180亿年后合并为黑洞。在离我们的银河系如此之近的地方发现这种演化路径上的恒星,为我们提供了一个极好的机会,让我们更多地了解这些黑洞双星是如何形成的。"共同作者、波茨坦大学的博士生丹尼尔-鲍里说:"这颗双星是迄今为止观察到的质量最大的接触双星。较小、较亮、较热的恒星,质量是太阳的32倍,目前正在向其较大的同伴失去质量,后者的质量是我们太阳的55倍。"天文学家今天看到的黑洞合并形成于数十亿年前,当时宇宙中的铁和其他较重元素含量较低。这些重元素的比例随着宇宙的老化而增加,这使得黑洞合并的可能性降低。这是因为重元素比例较高的恒星有更强的风,它们会更快地自我吹散。饱受研究的小麦哲伦云,距离地球约21万光年,由于自然界的一个怪癖,它的铁和其他重金属丰度约为我们银河系的七分之一。在这方面,它模仿了宇宙中遥远的过去的条件。但是与更古老、更遥远的星系不同,它足够接近,天文学家可以测量单个和双星的属性。在他们的研究中,研究人员利用美国宇航局哈勃太空望远镜(HST)和智利欧空局超大型望远镜上的多单元光谱探测器(MUSE)以及其他望远镜上的仪器在多个时段获得的数据,测量了来自双星的不同光带(光谱分析),其波长范围从紫外线到光学到近红外。利用这些数据,研究小组能够计算出恒星的径向速度--也就是说,它们向着或远离我们的运动--以及它们的质量、亮度、温度和轨道。然后他们将这些参数与最适合的进化模型相匹配。他们的光谱分析表明,较小的恒星的大部分外包层已经被其较大的同伴剥去了。他们还观察到这两颗恒星的半径都超过了它们的洛希瓣--也就是说,在一颗恒星周围,物质被引力束缚在该恒星上的区域--证实了较小恒星的一些物质正在溢出并转移到伴星上。在谈到这两颗恒星的未来演变时,里卡德解释说:"较小的恒星将首先成为一个黑洞,在短短70万年内,要么通过一个被称为超新星的壮观的爆炸,要么它可能大到坍缩成一个黑洞而不向外爆炸。在第一个黑洞开始从它的同伴那里增殖质量,对它的同伴进行报复之前,它们将成为约300万年的不安的邻居"。进行建模工作的Pauli补充说:"只过了20万年,用天文术语来说就是一瞬间,伴星也将坍缩成一个黑洞。这两颗大质量的恒星将继续围绕对方运行,在数十亿年的时间里每隔几天绕一圈。慢慢地,它们将通过发射引力波而失去这种轨道能量,直到它们每隔几秒钟就互相绕行一次,最终在180亿年后合并在一起,通过引力波释放出巨大的能量。"...PC版:https://www.cnbeta.com.tw/articles/soft/1358307.htm手机版:https://m.cnbeta.com.tw/view/1358307.htm

封面图片

天文学家发现前所未见的摧毁恒星的方法

天文学家发现前所未见的摧毁恒星的方法恒星死亡的本质宇宙中的恒星通常以可预测的方式结束自己的生命,这取决于它们的质量。像太阳这样质量相对较低的恒星在衰老过程中会脱落外层,最终褪色成为白矮星。质量更大的恒星燃烧得更旺盛,在超新星大爆炸中死亡得更快,会产生中子星和黑洞这样的超密集天体。如果两颗这样的恒星残骸形成双星系统,它们最终也会发生碰撞。然而,新的研究指出了一种假想已久但从未见过的第四种选择。这幅艺术家印象图展示了天文学家是如何利用由美国国家科学基金会NOIRLab负责操作的双子座南望远镜来研究强大的伽马射线暴(GRB)的,他们可能发现了一种前所未见的摧毁恒星的方法。与大多数由大质量恒星爆炸或中子星偶然合并引起的GRB不同,天文学家得出的结论是,这个GRB是由恒星或恒星残骸在一个古老星系核心的超大质量黑洞周围的拥挤环境中碰撞产生的。揭开新发现的面纱在寻找长持续伽玛射线暴(GRB)的起源时,天文学家利用智利的双子座南望远镜(由美国国家科学基金会NOIRLab运营的国际双子座天文台的一部分)、北欧光学望远镜和NASA/ESA哈勃太空望远镜,发现了恒星或恒星残余物在一个古老星系的超大质量黑洞附近的混乱而密集的区域中发生类似拆迁的碰撞的证据。荷兰拉德布德大学天文学家、《自然-天文学》(NatureAstronomy)杂志上一篇论文的第一作者安德鲁-莱万(AndrewLevan)说:"这些新结果表明,恒星可能会在宇宙中一些密度最大的区域遭遇灭顶之灾,在那里它们可能会被驱动发生碰撞。这对于了解恒星是如何死亡的,以及回答其他问题都是令人兴奋的,比如有哪些意想不到的来源可能会产生引力波,而我们可以在地球上探测到这些引力波。"观测证据和发现远古星系早已过了恒星形成的鼎盛时期,即使有巨型恒星,也所剩无几,而巨型恒星正是长GRB的主要来源。然而,它们的内核却充斥着恒星和各种超密集恒星残骸,如白矮星、中子星和黑洞。天文学家长期以来一直怀疑,在围绕着超大质量黑洞的汹涌蜂窝中,两个恒星天体迟早会发生碰撞,从而产生GRB。然而,这种合并的证据一直难以捉摸。天文学家利用由美国国家科学基金会NOIRLab运营的国际双子座天文台研究一个强大的伽马射线暴(GRB)时,可能观测到了一种前所未见的摧毁恒星的方式。与大多数由大质量恒星爆炸或中子星偶然合并引起的伽玛射线暴不同,天文学家得出的结论是,这个伽玛射线暴是由恒星或恒星残骸在一个古老星系核心的超大质量黑洞周围的拥挤环境中碰撞产生的。资料来源:国际双子座天文台/NOIRLab/NSF/AURA/M.Garlick/M.扎马尼2019年10月19日,美国宇航局尼尔-盖尔斯-斯威夫特天文台(NeilGehrelsSwiftObservatory)探测到了一道持续一分多钟的明亮伽马射线闪光,这是此类事件发生的第一个蛛丝马迹。任何持续时间超过两秒的伽玛射线暴都被认为是"长脉冲"。这种爆发通常来自超新星的死亡,其质量至少是太阳质量的10倍--但并非总是如此。研究人员随后利用"双子座南"对GRB逐渐消失的余辉进行了长期观测,以进一步了解其起源。通过观测,天文学家们将GRB的位置精确定位在距离一个古老星系的核心不到100光年的区域,这使得它非常靠近该星系的超大质量黑洞。研究人员还没有发现相应超新星的证据,而超新星会在双子座南研究的光线上留下印记。洞察GRB的起源莱万说:"我们的后续观测告诉我们,这次爆发并不是一颗大质量恒星的坍缩,而很可能是由两个紧凑的天体合并引起的。通过把它的位置精确定位到先前确定的一个古老星系的中心,我们首次获得了恒星走向灭亡的新途径的诱人证据。"双子座南望远镜是由美国国家科学基金会NOIRLab运营的国际双子座天文台的一半,从一个令人眩晕的高度可以看到双子座南望远镜的全部规模和偏远程度。双子座南望远镜位于海拔2715米(8900英尺)的CerroPachón山上,得益于当地稳定的大气条件。在背景中绵延的智利安第斯山脉之上,几乎可以感受到干燥的空气,这种空气可以减轻望远镜的"视力"。这张照片还拍摄到望远镜的8米镜面透过穹顶结构探出头来,这在白天是很不寻常的。图片来源:国际双子座天文台/NOIRLab/NSF/AURA/T.Matsopoulos在正常的星系环境中,中子星和黑洞等恒星残骸碰撞产生的长GRB被认为是非常罕见的。然而,远古星系的内核并不正常,可能有一百万甚至更多的恒星挤在一个只有几光年宽的区域里。这种极高的恒星群密度可能足以导致偶尔发生的恒星碰撞,尤其是在超大质量黑洞的巨大引力影响下,它会扰乱恒星的运动,使它们向随机方向飞去。最终,这些不听话的恒星会相交合并,引发巨大的爆炸,在遥远的宇宙空间都能观测到。这种事件有可能在宇宙中类似的拥挤区域经常发生,但直到现在才被人们注意到。它们之所以不为人知,一个可能的原因是星系中心充满了尘埃和气体,这可能会遮挡住GRB的初始闪光和由此产生的余辉。这次被确认为GRB191019A的GRB可能是一个罕见的例外,它让天文学家能够探测到这一爆发并研究其余辉。未来研究和影响研究人员希望发现更多有关这些事件的信息。他们希望能将GRB探测与相应的引力波探测相匹配,这将揭示更多关于这些事件的真实性质,并确认它们的起源,即使是在最阴暗的环境中。维拉-C-鲁宾天文台(VeraC.RubinObservatory)将于2025年投入使用,它在这类研究中将发挥不可估量的作用。莱万说:"研究像这样的伽马射线暴是一个很好的例子,它说明了从探测伽马射线暴,到用双子座这样的望远镜发现余辉和距离,再到用整个电磁波谱的观测结果对事件进行详细分析,许多设施的合作确实推动了这一领域的发展。"国家科学基金会国际双子座天文台项目主任马丁-斯蒂尔(MartinStill)说:"这些观测为双子座的丰富遗产增添了新的内容,加深了我们对恒星演化的理解。"这些时间敏感性观测证明了双子座天文台的灵活运作和对宇宙中遥远的动态事件的敏感性。"...PC版:https://www.cnbeta.com.tw/articles/soft/1379599.htm手机版:https://m.cnbeta.com.tw/view/1379599.htm

封面图片

天文学家发现有纪录以来最大宇宙黑洞

天文学家发现有纪录以来最大宇宙黑洞天文学家近期借助“引力透镜”效应,观察到有史以来超大质量黑洞。法新社报道,这项于星期三(3月29日)刊登在《皇家天文学会月刊》(RoyalAstronomicalSociety,简称RAS)的研究说,科学家在前景星系中发现了一个超大质量黑洞,其质量是太阳质量的300亿倍以上,是迄今观察到的四大黑洞之一;距离地球约有20亿光年。领导这项研究的英国达勒姆大学的天文学家南丁格尔(JamesNightingale)说,他们是在一个“非常偶然的”情况下,在遥远宇宙中某个星系光线极其靠近黑洞时,透过“引力透镜”发现了超大质量黑洞(Supermassiveblackhole,简称SMBH)。“引力透镜”(GravitationalLensing)是科学家爱因斯坦的广义相对论所预言的一种现象。由于时空在大质量天体附近发生畸变,光线经过大质量天体附近时会发生弯曲,从而放大了遥远的宇宙,让遥远而暗弱的天体变得清晰。研究人员使用计算机模拟和哈勃太空望远镜的图像确认了这一发现,并排除其他可能性,如暗物质的过度集中等。南丁格尔说,新发现的黑洞预料是有纪录以来的最大质量黑洞,但鉴于所涉及的技术和各种不确定性,暂不能确定这一论述。超大质量黑洞位于星系的中心,利用巨大的引力像尘埃一样吞噬恒星,连光线都会被吞噬。从前,科学家经由观测黑洞吞噬恒星时释放的光型能量,或通过测量恒星经过时加速的轨道来发现这类大小的黑洞;但这些技术只对相对靠近地球的星系有效。南丁格尔说,天文学家能够通过引力透镜“发现其他99%的星系中的黑洞,这些星系目前是无法进入的”。天文学家目前已发现了500个引力透镜,其中至少有一个是超大质量黑洞。因此,当欧洲航天局在7月发射“欧几里德“宇宙飞船到外太空后,预计天分学家将在接下来六年里,经欧几里德发现10万个新引力透镜,开启一个“黑洞大数据时代”。

封面图片

天文学家在我们的"宇宙后院"发现离地球最近的黑洞:盖亚BH1

天文学家在我们的"宇宙后院"发现离地球最近的黑洞:盖亚BH1盖亚BH1在天文学上距离地球足够近,以至于美国国家科学基金会的NOIRLab天文学中心认为它是"在我们的宇宙后院"。天体物理学家卡里姆-艾尔-巴德瑞(KareemEl-Badry)在NOIRLab周五的一份声明中说:"虽然有很多人声称探测到了这样的系统,但几乎所有这些发现后来都被驳斥了。而这是第一次毫不含糊地探测到在我们银河系中围绕恒星质量黑洞的宽广轨道上的类似太阳的恒星。"与生活在星系中心的超大质量黑洞相比,恒星质量的黑洞是我们太阳质量的5到100倍。El-Badry是本周发表在《皇家天文学会月报》上的一篇关于黑洞的论文的主要作者。冗长的合著者名单表明这项研究是多么复杂和具有挑战性。找到这个黑洞是一个具有许多层次的科学胜利。这个天文学故事从欧洲航天局的盖亚空间观测站开始,该观测站正在对我们银河系的恒星进行编目。研究人员在Gaia数据中发现了一颗非常像我们太阳的恒星,它显示出一种独特的摆动,表明有东西在拉扯它。那东西原来就是休眠的黑洞。休眠黑洞很难被发现,因为它们没有大肆喧哗(就像黑洞被发现会"打饱嗝",喷射出吸入的内容物),它们只是安静地在一旁呆着。盖亚团队成员TinekeRoegiers周五在欧空局的一份声明中写道:"能够发现这个黑洞的唯一原因是盖亚能够以如此高的精度看到(围绕它运行的)恒星的位置。当恒星围绕着黑洞移动时,这个位置就会晃动。"盖亚的发现只是一个开始。天文团队转向其他望远镜来观察这一发现。由夏威夷NOIRLab操作的双子座北方望远镜发挥了关键作用,让研究小组对盖亚发现的恒星的轨道进行了精确测量。El-Badry说:"我们找不到任何合理的天体物理学方案来解释观察到的该系统的轨道,不涉及至少一个黑洞。"像这样的黑洞是由大质量恒星坍缩形成的,因此盖亚BH1和它的伴星组成了一个双星系统。该系统的形成和演变有点神秘。Roegiers将这个黑洞描述为"相当特别",他说:"它不同于所有其他已知的黑洞,它的存在很难用标准的双星演化模型来解释。"NOIRLab估计,银河系中可能有1亿个恒星质量的黑洞,尽管被证实的黑洞非常少。盖亚BH1的发现是朝着定位和了解那些没有向宇宙大声宣布其存在的安静黑洞迈出的重要一步。因此,盖亚BH1可能是对双星系统如何演变的新理解的开始。...PC版:https://www.cnbeta.com.tw/articles/soft/1331871.htm手机版:https://m.cnbeta.com.tw/view/1331871.htm

封面图片

黑洞之谜:天文学家只能拼凑出“看不见的巨人”的起源

黑洞之谜:天文学家只能拼凑出“看不见的巨人”的起源图像描述了麻省理工学院的一项研究发现,就目前而言,已知的黑洞双星目录并没有揭示出关于黑洞如何形成的任何基本情况。图为模拟超大质量黑洞双星系统发出的光,其中周围的气体是光学稀薄(透明)的。资料来源:美国宇航局戈达德太空飞行中心天文学家们希望通过分析迄今为止检测到的69个确认的双星,找出这些起源故事中哪个更有可能。但是一项新的研究发现,就目前而言,目前的双星目录还不足以揭示出关于黑洞如何形成的任何基本情况。在发表在《天文学和天体物理学通讯》杂志上的一项研究中,麻省理工学院的物理学家们表明,当所有已知的双星和它们的旋转被纳入黑洞形成的模型时,结论可能看起来非常不同,取决于用于解释数据的特定模型。因此,一个黑洞的起源可以以不同的方式"旋转",这取决于一个模型对宇宙如何运作的假设。"当你改变模型,使其更加灵活或做出不同的假设时,你会得到一个关于黑洞如何在宇宙中形成的不同答案,"研究的共同作者,在LIGO实验室工作的麻省理工学院研究生SylviaBiscoveanu说。"我们表明,人们需要小心,因为我们的数据还没有达到我们可以相信模型告诉我们的阶段。"该研究的共同作者包括ColmTalbot,麻省理工学院的博士后;以及SalvatoreVitale,麻省理工学院的物理学副教授和Kavli天体物理学和空间研究所的成员。两个起源的故事双星系统中的黑洞被认为是通过两种途径之一产生的。第一条是通过"现场双星演化",即两颗恒星一起演化,最终在超新星中爆炸,留下两个黑洞,继续在双星系统中盘旋。在这种情况下,黑洞应该有相对一致的自旋,因为它们会有时间--先是作为恒星,然后是黑洞,相互拉扯形成类似的方向。如果一个双星的黑洞具有大致相同的自旋,科学家们认为它们一定是在一个相对安静的环境中进化的,比如银河系的圆盘。黑洞双星也可以通过"动态组合"形成,即两个黑洞分别演化,每个都有自己独特的倾斜和自旋。通过一些极端的天体物理过程,这些黑洞最终被聚集在一起,接近到足以形成一个双星系统。这样的动态配对很可能不是发生在一个安静的星系盘中,而是发生在一个更加密集的环境中,比如球状星团,在那里成千上万的恒星的相互作用可以将两个黑洞撞到一起。如果一个双星的黑洞具有随机定向的自旋,那么它们很可能是在球状星团中形成的。但是,通过一个渠道和另一个渠道形成的双星的比例是多少?天文学家认为,答案应该在于数据,尤其是对黑洞旋转的测量。迄今为止,天文学家已经得出了69个双星中黑洞的旋转,这些双星是由包括美国的LIGO和意大利的Virgo在内的引力波探测器网络发现的。每个探测器都在倾听引力波的迹象--通过时空产生的非常微妙的回响,这些回响是由极端的天体物理事件(如大质量黑洞的合并)留下的。对于每一个双星的探测,天文学家都对各自黑洞的属性进行了估计,包括它们的质量和自旋。他们将自旋测量结果应用于一个普遍接受的黑洞形成模型中,并发现有迹象表明,双星既可能有优先的、一致的自旋,也可能有随机的自旋。也就是说,宇宙可能在星系盘和球状星团中都产生双星。"但是我们想知道,我们是否有足够的数据来进行这种区分?"Biscoveanu说。"结果发现,事情是混乱的,不确定的,而且比看起来更难。"旋转的数据在他们的新研究中,麻省理工学院的研究小组测试了相同的数据在进入黑洞如何形成的稍微不同的理论模型时是否会产生相同的结论。研究小组首先在一个广泛使用的黑洞形成模型中再现了LIGO的自旋测量。这个模型假设宇宙中的一部分双星倾向于产生具有对齐自旋的黑洞,而其余的双星具有随机自旋。他们发现,数据似乎与这个模型的假设相吻合,并在模型预测的具有相似旋转的黑洞较多的地方显示出一个峰值。然后他们略微调整了这个模型,改变了它的假设,使它预测了一个稍微不同的首选黑洞旋转方向。当他们把同样的数据放到这个调整后的模型中时,发现数据发生了变化,与新的预测相一致。在其他10个模型中,数据也发生了类似的转变,每个模型对黑洞如何偏好旋转都有不同的假设。"我们的论文显示,研究结果完全取决于你如何建立天体物理学模型,而不是数据本身,"Biscoveanu说。"如果我们想提出一个独立于我们所做的天体物理学假设的主张,我们需要比我们想象的更多的数据。"只是天文学家还需要多少数据呢?据估计一旦LIGO网络在2023年初重新启动,仪器将每隔几天检测到一个新的黑洞双星。在接下来的一年里可能会增加数百个测量数据,以补充到数据中。"我们现在对自旋的测量是非常不确定的,"Vitale说。"但是当我们积累了很多,我们可以获得更好的信息。然后我们可以说,无论我的模型有多大的细节,数据总是告诉我同一个故事--一个我们当时可以相信的故事。"...PC版:https://www.cnbeta.com.tw/articles/soft/1340683.htm手机版:https://m.cnbeta.com.tw/view/1340683.htm

封面图片

天文学家发现了一个“休眠”黑洞

天文学家发现了一个“休眠”黑洞日前,美乔治亚州立大学物理学与天文学学术人员IdanGinsburg刊文称:谈到黑洞研究领域,似乎总是有一些新的和令人兴奋的事情发生。1922年,阿尔伯特·爱因斯坦首次出版了解释广义相对论的书--其中假设了黑洞。现在,一百年后,天文学家捕捉到了银河系中心的黑洞的实际图像。在最近的一篇论文中,一个天文学家小组描述了另一个令人兴奋的新发现:在银河系外观察到的第一个“休眠”黑洞。我是一名天体物理学家,近二十年来一直在研究黑洞--宇宙中密度最大的天体。不发出任何可探测的光的黑洞被称为休眠黑洞。它们是出了名得难以发现的。这个新发现特别令人激动,因为它提供了对黑洞形成和演变的洞察力。这些信息对于理解引力波以及其他天文事件至关重要。VFTS243究竟是什么?VFTS243是一个双星系统,这意味着它是由两个围绕共同质量中心运行的天体组成。第一个天体是一颗非常热的蓝色恒星,质量是太阳的25倍,第二个天体则是一个质量比太阳大8倍的黑洞。VFTS243位于大麦哲伦星云中的塔兰图拉星云,这是银河系的一个卫星星系,距离地球约16.3万光年。VFTS243中的黑洞被认为是休眠的,因为它没有发出任何可探测的辐射。这跟其他双星系统形成了鲜明的对比,在这些双星系统中,可以检测到黑洞发出的强烈的X射线。黑洞的直径约为33英里(54公里),跟比它大20万倍的高能星相比它显得相形见绌。两者都围绕一个共同的质心快速旋转。即使在最强大的望远镜下,这个系统在视觉上看起来也是一个单一的蓝点。寻找休眠的黑洞天文学家怀疑,在银河系和大麦哲伦星系中隐藏着数百个这样的双星系统,其中的黑洞不会发出X射线。当黑洞从一颗伴星上剥离物质时最容易被发现,这个过程被称为“进食”。进食会产生一个围绕着黑洞的气体和尘埃盘。当盘中的物质向黑洞落下时,摩擦将吸积盘加热到数百万度。这些热的物质盘发出了大量的X射线。第一个以这种方式被探测到的黑洞是著名的天鹅座X-1系统。多年来,天文学家已经知道VFTS243是一个双星系统,但该系统到底是一对恒星还是一颗恒星和一个黑洞之间的舞蹈还不清楚。为了确定哪个是真的,研究该双星的研究小组使用了一种叫做光谱分解的技术。这种技术将来自VFTS243的光分离成其组成波长,这类似于白光进入棱镜后产生的不同颜色。这项分析显示,来自VFTS243的光是来自一个单一的来源而非两颗独立的恒星。由于没有探测到来自该恒星同伴的辐射,唯一可能的结论是,双星中的第二个体是一个黑洞,因此是在银河系外发现的第一个休眠黑洞。为什么VFTS243非常重要?大多数质量小于100个太阳的黑洞都是由一颗大质量恒星坍缩形成。当这种情况发生时,往往会有一个巨大的爆炸,被称为超新星。VFTS243系统中的黑洞跟恒星处于一个圆形的轨道上,这一事实有力地证明了没有发生超新星爆炸,否则可能会将黑洞踢出系统--或至少是破坏轨道。相反,前身星似乎直接坍缩形成了黑洞而没有爆炸。VFTS2...PC版:https://www.cnbeta.com/articles/soft/1307107.htm手机版:https://m.cnbeta.com/view/1307107.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人