韦布望远镜观测到最古老“死亡”星系 JADES-GS-z7-01-QU

韦布望远镜观测到最古老“死亡”星系JADES-GS-z7-01-QUGOODS南区一小部分区域的JWST假彩色图像,突出显示了JADES-GS-z7-01-QU星系图源:JADES协作小组这幅GOODS-South星场的合成图像是利用构成欧洲南方天文台(ESO)甚大望远镜(VLT)的四台8.2米巨型望远镜中的两台望远镜和一个独特的定制滤光片进行深度观测的结果,它显示了一些有史以来最暗淡的星系。这是使用两台8.2米望远镜进行的深度观测的一部分。后来,JWST将这一区域的一小部分归零。(图片来源:ESO/MHayes)短暂一生这个星系代号JADES-GS-z7-01-QU,它在宇宙大爆炸发生大约7亿年后形成,有大约1亿至10亿颗恒星,属于较小星系。星系中的恒星形成过程只持续了3000万年到9000万年就戛然而止。主持研究的英国剑桥大学卡弗里宇宙学研究所天体物理学家托比亚斯·洛塞说,这个星系似乎“轰轰烈烈地”活过一场,但很快不再有新的恒星形成,星系就此“死去”。参与研究的天体物理学家弗朗西斯科·德欧金尼奥说,质量最大的恒星最炽热、最耀眼,“生命最短暂”。“随着最炽热的恒星死去,星系颜色从蓝色,即最炽热恒星的颜色,变成黄色,再变成红色,即质量最小的恒星的颜色。”质量和太阳差不多的恒星可以活大约100亿年,而质量小得多的恒星能活上万亿年。那些较小的恒星在星系“死去”很久后仍会继续发光。“饿死”的?研究人员尚不清楚JADES-GS-z7-01-QU为何“英年早逝”,正试图找出原因。他们推测其中一个原因可能是星系中央一个超大黑洞把新恒星形成所需要的气体推出星系,导致无法形成新的恒星。还可能是因为恒星形成过程中迅速消耗掉星系中气体,但星系周围没有新的气体补充进来,导致星系“饿死”。研究人员说,由于这个星系距地球非常遥远,因此韦布望远镜观测到的是星系“过去”的情况,不排除星系在获得新的气体后又有新的恒星诞生,令星系“死而复生”。德欧金尼奥说:“我们不知道这个星系的最终命运,这可能取决于是什么机制使恒星停止诞生。”研究人员说,对这一星系的研究或能进一步揭示宇宙形成早期时的景象以及影响恒星形成的因素。...PC版:https://www.cnbeta.com.tw/articles/soft/1422922.htm手机版:https://m.cnbeta.com.tw/view/1422922.htm

相关推荐

封面图片

韦布观测到迄今最古老星系JADES-GS-z13-0

韦布观测到迄今最古老星系JADES-GS-z13-0当来自最遥远星系的光到达地球时,它已经因为宇宙的膨胀被拉伸,并转移到光谱的红外区域。韦伯望远镜上的近红外相机能检测到这种红外光,因此能快速发现一系列前所未有的星系,其中一些星系可能会重塑天文学家对早期宇宙的理解。天文学家认为,在这两项研究中,他们“确凿无疑地探测到了”迄今已知4个最遥远的星系。这些星系诞生于宇宙大爆炸后3亿至5亿年,这意味着这些星系来自所谓的“再电离时代”,即人们认为第一批恒星出现的时期。这两篇新论文的合著者、巴黎天体物理研究所研究员斯蒂芬·查洛特表示,这4个星系中,最古老的星系JADES-GS-z13-0形成于宇宙大爆炸后3.2亿年,这是天文学家观测到的最遥远距离。韦伯望远镜还证实了JADES-GS-z10-0的存在,它可追溯到宇宙大爆炸后4.5亿年。查洛特说,这4个星系的质量都“非常小”,约为太阳质量的1亿倍。相比之下,银河系的重量约为太阳质量的1.5万亿倍。他补充道,这些星系的“金属含量非常低”,这一点符合宇宙学标准模型。该模型指出,离宇宙大爆炸越近,留给这些金属形成的时间就越短。美国耶鲁大学天文学家彼得·范·多科姆评论称:“人类距离宇宙的过往越来越近,从这些星系诞生到宇宙大爆炸之间,只剩3亿年尚未被探索。”...PC版:https://www.cnbeta.com.tw/articles/soft/1353421.htm手机版:https://m.cnbeta.com.tw/view/1353421.htm

封面图片

詹姆斯·韦布空间望远镜探测到宇宙早期星系中存在碳

詹姆斯·韦布空间望远镜探测到宇宙早期星系中存在碳  研究示意图。图片来源:物理学家组织网早期宇宙几乎完全由最简单的氢元素,以及少量氦和锂组成。而现在观察到的宇宙中所有其他元素都在恒星内部形成。当恒星爆炸成超新星时,产生的元素在宿主星系内循环,孕育下一代恒星。随着每一代新恒星和“星尘”诞生,越来越多金属形成,宇宙进化到可以支持地球等岩石行星的存在以及生命的繁衍生息。在最新研究中,科学家使用韦布望远镜观测了一个宇宙大爆炸后仅3.5亿年就已经存在的星系,这是迄今科学家探测到的最遥远的星系之一。他们使用韦布的近红外光谱仪,将来自该年轻星系的光分解成一系列颜色。鉴于不同元素会在星系光谱中留下不同的化学“指纹”,科学家由此可确定其化学成分。光谱分析“可靠地”检测到了碳,“初步”检测到了氧和氖。研究人员表示,此前认为宇宙大爆炸后约10亿年碳才开始大量聚集,但他们发现碳形成得更早。这意味着第一批恒星的运行方式可能非常不同。鉴于碳是人类已知生命的基础,生命在宇宙中进化的时间可能比现在认为的早得多。...PC版:https://www.cnbeta.com.tw/articles/soft/1434477.htm手机版:https://m.cnbeta.com.tw/view/1434477.htm

封面图片

天文学家用韦伯望远镜揭开宇宙最古老低质量星系的秘密

天文学家用韦伯望远镜揭开宇宙最古老低质量星系的秘密罗格斯大学的天文学家利用詹姆斯-韦伯太空望远镜研究了沃尔夫-伦德马克-梅洛特星系,揭开了宇宙早期恒星形成的历史。他们的发现为星系如何演化以及温度在恒星形成中的作用提供了新的见解。资料来源:美国国家航空航天局面向宇宙的“考古发掘”艺术与科学学院物理与天文学系助理教授克里斯汀-麦奎恩(KristenMcQuinn)说:"通过如此深入的观察和如此清晰的观察,我们已经能够有效地回到过去,基本上是在进行一种考古挖掘,寻找宇宙历史早期形成的低质量恒星。"她领导的这项研究发表在《天体物理学报》。McQuinn认为,罗格斯大学高级研究计算办公室管理的Amarel高性能计算集群使研究小组能够计算银河系的恒星发展史。这项研究的一个方面是将一次大规模计算重复600次。她补充说,这项重大计算工作还有助于确认望远镜校准和数据处理程序,这将使更广泛的科学界受益。WLM星系部分区域的两幅景象,一幅由美国宇航局哈勃太空望远镜拍摄(左),另一幅由詹姆斯-韦伯太空望远镜拍摄。图片来源:Science:NASA,ESA,CSA,IPAC,KristenMcQuinn(RU),ImageProcessing:ZoltG.Levay(STScI),AlyssaPagan(STScI)低质量星系的重要性麦奎恩对所谓的"低质量"星系特别感兴趣。因为它们被认为是早期宇宙的主宰,研究人员可以利用它们来研究恒星的形成、化学元素的演化以及恒星形成对星系气体和结构的影响。它们很微弱,分布在天空中,构成了本地宇宙中的大多数星系。像韦伯望远镜这样先进的望远镜让科学家们能够近距离观察它们。WLM是德国天文学家马克斯-沃尔夫(MaxWolf)于1909年发现的一个"不规则"星系,这意味着它不具有明显的形状,如螺旋形或椭圆形,瑞典天文学家克努特-伦德马克(KnutLundmark)和英国天文学家菲力伯特-雅克-梅洛特(PhilibertJacquesMelotte)于1926年对它进行了更详细的描述。它位于本星系群的外围,本星系群是一个哑铃状的星系群,其中包括银河系。麦奎因指出,由于位于本星系群的边缘,WLM免受了与其他星系交融的破坏,使其恒星群处于原始状态,有利于研究。天文学家之所以对WLM感兴趣,还因为它是一个充满活力的复杂星系,拥有大量气体,能够积极地形成恒星。WLM银河系中的恒星形成为了了解银河系恒星形成的历史--即恒星在宇宙不同时期的诞生速度,麦奎恩和她的团队利用这架望远镜煞费苦心地将包含成千上万颗恒星的天空区域归零。为了确定恒星的年龄,他们测量了恒星的颜色(代表温度)和亮度。麦奎因说:"我们可以利用我们对恒星演化的了解,以及这些颜色和亮度所表明的情况,基本上确定星系恒星的年龄。"研究人员随后对不同年龄的恒星进行了计数,并绘制出了宇宙历史上恒星的诞生率。以这种方式对恒星进行编目向研究人员表明,随着时间的推移,WLM产生恒星的能力在起伏。研究小组的观测结果证实了科学家们早些时候利用哈勃太空望远镜所做的评估,这些观测结果表明,在宇宙历史的早期,该星系曾在30亿年的时间里产生过恒星。它停顿了一段时间,然后又重新点燃。她相信这种停顿是由早期宇宙的特定条件造成的:"那时的宇宙真的很热。我们认为,宇宙的温度最终加热了这个星系中的气体,使恒星的形成一度停止。冷却期持续了几十亿年,然后恒星形成再次开始。"这项研究是美国国家航空航天局"早期发布计划"的一部分,该计划指定科学家与太空望远镜科学研究所合作开展研究,旨在突出韦伯的能力,帮助天文学家为未来的观测做好准备。美国国家航空航天局于2021年12月发射了韦伯望远镜。这个大型镜面仪器在距离地球一百万英里的地方围绕太阳运行。科学家们争先恐后地在望远镜上研究一系列课题,包括早期宇宙的状况、太阳系的历史以及系外行星的搜寻。麦奎因说:"这项计划将产生许多尚未完成的科学成果。"相关文章:韦伯望远镜在极端恒星环境中发现生命的前身:水和简单的有机分子...PC版:https://www.cnbeta.com.tw/articles/soft/1422060.htm手机版:https://m.cnbeta.com.tw/view/1422060.htm

封面图片

韦伯望远镜发现迄今最古老黑洞

韦伯望远镜发现迄今最古老黑洞许多星系的中心都有一个超大质量黑洞,但科学家们目前尚不清楚这些黑洞是如何变得如此之大的。一种可能性是,它们由早期恒星坍缩产生的小黑洞形成,随着时间的推移,这些小黑洞结合在一起,形成一个超大质量黑洞。另一种说法是,它们是早期宇宙中大量气体直接塌缩而形成。在最新研究中,美国得克萨斯大学奥斯汀分校的丽贝卡·拉森及其同事们确定了迄今为止最早的黑洞,根据其与地球的距离,她们认为这个黑洞诞生于宇宙大爆炸后5.7亿年。此外,研究表明,这个黑洞的质量是太阳的1000万倍。拉森指出,这是早期宇宙中黑洞形成和生长的一个非常重要的未知领域,最新研究将有助科学家们揭示此类黑洞的形成原因。为识别出这个黑洞,拉森团队利用韦伯望远镜观察了一个星系,哈勃望远镜此前曾将该星系确定为宇宙早期已知最明亮的星系,但哈勃望远镜一直无法分辨出星系里面是什么。使用两台相机和两台分光镜,韦伯望远镜可分辨出星系发出的光信号的不同成分,并据此发现了这个黑洞。英国谢菲尔德大学的詹姆斯·穆兰尼说,这个黑洞的质量似乎表明,它不是由恒星质量的黑洞发展而来。相关研究已经提交论文预印本网站。...PC版:https://www.cnbeta.com.tw/articles/soft/1352643.htm手机版:https://m.cnbeta.com.tw/view/1352643.htm

封面图片

詹姆斯-韦伯望远镜发现了关于一个古老星系GS-9209的新细节

詹姆斯-韦伯望远镜发现了关于一个古老星系GS-9209的新细节首先,研究人员发现,这个古老的星系大约比银河系小10倍。研究人员估计,该星系的综合质量约为太阳的400亿倍,对于这样一个古老的星系来说,这是一个令人感兴趣的特征。尽管有如此巨大的大小差异,但是GS-9202的恒星数量几乎与我们的银河系一样多,这使得它的密度极高,而且充满了宇宙物质。研究人员试图了解更多,尽管GS-9202是如此密集地挤满了宇宙物质,但它却意料之外地不再吐出年轻的星星。事实上,研究小组说,当他们在大爆炸后大约12.5亿年观察到它时,这个星系至少有5亿年没有形成任何新的恒星。詹姆斯-韦伯观察了这个古老的星系,发现它为什么在5亿多年里没有形成新的恒星。图片来源:《自然》:自然》(2023)。DOI:10.1038/s41586-023-06158-6对这个古老星系特质的进一步分析表明,GS-9209的中心包含一个超大质量黑洞,比天文学家预期的拥有如此数量恒星的星系大五倍。因此,这个黑洞的大小可以帮助解释为什么GS-9209不再产生新的恒星。当超大质量黑洞,像这里和其它星系中心发现的黑洞开始增长时,它们会释放出大量的高能辐射。这种辐射可以加热并将气体挤出星系。那么,这个古老的星系的无星特征,可能是由于中心的黑洞的快速膨胀将所有需要承载新星的气体从密集的区域推了出来。关于这些发现的一项新研究可在《自然》杂志上阅读:https://www.nature.com/articles/s41586-023-06158-6在该研究中,研究人员详细介绍了他们的发现,以及他们发现的围绕这个古老星系的特征。...PC版:https://www.cnbeta.com.tw/articles/soft/1361715.htm手机版:https://m.cnbeta.com.tw/view/1361715.htm

封面图片

参与FEAST项目的韦伯太空望远镜捕捉到螺旋星系M51的壮观景象

参与FEAST项目的韦伯太空望远镜捕捉到螺旋星系M51的壮观景象詹姆斯-韦伯太空望远镜(JamesWebbSpaceTelescope)拍摄到了宏伟设计的螺旋星系M51的惊人图像,展示了其发达的旋臂。M51距地球2700万光年,它与附近的矮星系NGC5195有着独特的关系,据信是后者影响了它独特的旋臂。图片来源:ESA/Webb、NASA&CSA、A.Adamo(斯德哥尔摩大学)和FEASTJWST小组从美国宇航局/欧空局/中科院詹姆斯-韦伯太空望远镜拍摄的这张照片上可以看到,大设计螺旋星系M51优美的旋臂蜿蜒伸展。与那些旋臂粗糙或紊乱的千奇百怪的旋涡星系不同,大设计旋涡星系拥有突出、发达的旋臂,就像这幅图像中展示的那样。这张星系肖像是一张合成图像,它整合了韦伯近红外相机(NIRCam)和创新的中红外仪器(MIRI)的数据,其中一半数据由欧洲提供。在这幅图像中,暗红色区域描绘了渗透在星系介质中的丝状暖尘埃。红色区域显示了尘粒上形成的复杂分子的再处理光,而橙色和黄色则显示了新近形成的星团电离气体区域。恒星反馈对银河系的介质产生了巨大的影响,并形成了复杂的亮节网络和空洞的黑气泡。M51--又名NGC5194或漩涡星系--位于距地球约2700万光年远的金犬座,与它的近邻矮星系NGC5195之间的关系跌宕起伏。这两个星系之间的相互作用使它们成为夜空中被研究得最透彻的一对星系。M51较小的伴星系的引力影响被认为是造成该星系突出而独特的旋臂的部分原因。如果你想更多地了解这对争吵不休的星系邻居,可以浏览下面美国宇航局/欧空局哈勃太空望远镜对M51的早期观测。这张有史以来最清晰的图像是2005年1月用NASA/ESA哈勃太空望远镜上的高级巡天照相机拍摄的,它展示了一个螺旋星系的宏伟设计,从年轻恒星所在的弯曲旋臂,到老恒星所在的淡黄色中央核心。这个星系因其漩涡结构而被昵称为漩涡星系。资料来源:NASA、ESA、S.Beckwith(STScI)和哈勃遗产小组(STScI/AURA)FEAST项目及其目标韦伯对M51的这次观测是一系列观测中的一次,这些观测被统称为"银河系外新出现星团的反馈"(FeedbackinEmergingextrAgalacticStarclusTers,简称FEAST)。FEAST观测旨在揭示银河系以外环境中恒星反馈与恒星形成之间的相互作用。恒星反馈是一个术语,用来描述恒星向形成恒星的环境输出能量,是决定恒星形成速度的关键过程。了解恒星反馈对于建立精确的恒星形成普遍模型至关重要。深入了解恒星的形成FEAST观测的目的是发现和研究银河系以外星系中的恒星苗圃。在韦伯望远镜投入使用之前,智利沙漠中的阿塔卡马大型毫米波阵列和哈勃等其他天文台已经让我们看到了恒星形成之初(追踪恒星将在其中形成的稠密气体和尘埃云)或恒星以其能量摧毁了原有气体和尘埃云之后的情况。韦伯望远镜为我们了解恒星形成的早期阶段、恒星的光以及气体和尘埃的能量再处理打开了一扇新窗口。科学家们第一次在我们本星系群以外的星系中看到了从原生云中冒出来的星团。他们还将能够测量这些恒星用新形成的金属污染和清除气体所需的时间(这些时间尺度因星系而异)。通过研究这些过程,我们将更好地了解星系内恒星形成周期和金属富集是如何调节的,以及行星和褐矮星形成的时间尺度。一旦新形成的恒星中的尘埃和气体被清除,就不会再有形成行星的物质了。...PC版:https://www.cnbeta.com.tw/articles/soft/1381975.htm手机版:https://m.cnbeta.com.tw/view/1381975.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人