韦伯望远镜探测到迄今发现最远的活跃超大质量黑洞

韦伯望远镜探测到迄今发现最远的活跃超大质量黑洞科学家们利用韦伯望远镜对GN-z11进行研究,还发现了一些诱人的证据,证明在这个偏远星系的外围存在着群体III恒星。这些难以捉摸的恒星是宇宙中第一批发光的恒星,纯粹由氢和氦组成。虽然从未对这类恒星进行过明确的探测,但科学家们知道它们一定存在。现在,有了韦伯望远镜,发现它们似乎比以往任何时候都更接近了。这幅由韦伯的近红外相机(NIRCam)仪器拍摄的图像显示了GOODS-North星系场的一部分。右下方的拉线突出显示了GN-z11星系,它出现的时间距离宇宙大爆炸刚刚过去4.3亿年。图像显示了一个延伸部分,追踪着GN-z11宿主星系,以及一个中心源,其颜色与黑洞周围吸积盘的颜色一致。资料来源:NASA、ESA、CSA、STScI、BrantRobertson(加州大学圣克鲁兹分校)、BenJohnson(剑桥大学天文学院)、SandroTacchella(剑桥大学)、MarciaRieke(亚利桑那大学)、DanielEisenstein(剑桥大学天文学院)美国国家航空航天局(NASA)詹姆斯-韦伯太空望远镜(JamesWebbSpaceTelescope)的两个研究小组深入时空,研究了异常明亮的星系GN-z11。这个星系最初是由美国国家航空航天局的哈勃太空望远镜探测到的,它是迄今为止观测到的最年轻、最遥远的星系之一,它是如此明亮,以至于科学家们都很难理解其中的原因。现在,GN-z11透露了它的一些秘密。一个利用韦伯望远镜研究GN-z11的小组发现了第一个明确的证据,证明该星系的中央有一个超大质量黑洞,正在快速吸积物质。他们的发现使这个星系成为迄今为止发现的最远的活跃超大质量黑洞。英国剑桥大学卡文迪什实验室和卡弗里宇宙学研究所的首席研究员罗伯托-马约利诺解释说:"我们发现了超大质量黑洞附近常见的极致密气体。这些是GN-z11所在的黑洞正在吞噬物质的第一个明确信号。"利用韦伯望远镜,研究小组还发现了通常在吸积型超大质量黑洞附近观测到的电离化学元素的迹象。此外,他们还发现该星系正在释放出一股非常强大的风。这种高速风通常是由与剧烈吸积的超大质量黑洞相关的过程驱动的。同样来自卡文迪什实验室和卡弗里研究所的研究人员汉娜-于布勒(HannahÜbler)说:"韦伯的近红外相机(NIRCam)发现了一个延伸部分,它追踪着宿主星系,以及一个中央紧凑源,其颜色与黑洞周围吸积盘的颜色一致。"这些证据共同表明,GN-z11内有一个200万太阳质量的超大质量黑洞,它正处于吞噬物质的非常活跃阶段,这也是它如此明亮的原因。第二个小组也是由马约利诺领导的,他们利用韦伯望远镜的近红外摄谱仪(NIRSpec),在围绕着GN-z11的光环中发现了一个气态氦团。马约利诺说:"除了氦之外,我们看不到其他任何东西,这表明这个团块一定是相当原始的。这是理论和模拟在这些时代特别大质量星系附近所预料到的--在光晕中应该有原始气体的小块存留,这些气体可能会坍缩并形成群体III星团。"寻找前所未见的第三族群恒星--几乎完全由氢和氦形成的第一代恒星--是现代天体物理学最重要的目标之一。这些恒星预计质量很大、光度很强、温度很高。它们的预期特征是存在电离氦,而不存在比氦重的化学元素。第一批恒星和星系的形成标志着宇宙历史的根本性转变,在此期间,宇宙从黑暗和相对简单的状态演变成我们今天看到的高度结构化和复杂的环境。在未来的韦伯观测中,Maiolino、Übler和他们的团队将对GN-z11进行更深入的探索,并希望加强对可能正在其光环中形成的PopulationIII恒星的研究。《天文学与天体物理学》(Astronomy&Astrophysics)已接受发表关于GN-z11光环中原始气体团块的研究成果。对GN-z11黑洞的研究结果于2024年1月17日发表在《自然》杂志上。这些数据是作为JWST高级深河外星系巡天(JADES)的一部分获得的,JADES是NIRCam和NIRSpec团队的一个联合项目。詹姆斯-韦伯太空望远镜是世界上最重要的太空科学观测站。韦伯正在揭开太阳系的神秘面纱,眺望其他恒星周围的遥远世界,探索宇宙的神秘结构和起源以及我们在宇宙中的位置。韦伯望远镜是一项国际计划,由美国国家航空航天局(NASA)领导,其合作伙伴包括欧洲航天局(ESA)和加拿大航天局(CanadianSpaceAgency)。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1423141.htm手机版:https://m.cnbeta.com.tw/view/1423141.htm

相关推荐

封面图片

詹姆斯·韦伯太空望远镜探测到迄今为止最遥远的活跃超大质量黑洞

詹姆斯·韦伯太空望远镜探测到迄今为止最遥远的活跃超大质量黑洞韦伯还发现了11个星系,它们存在于宇宙诞生4.7亿到6.75亿年前。这一证据是由德克萨斯大学奥斯汀分校的史蒂芬·芬克尔斯坦领导的韦伯宇宙演化早期发布科学(CEERS)调查提供。该项目结合了韦伯非常详细的近红外和中红外图像以及被称为光谱的数据,所有这些都被用于做出这些发现。深深地凝视着这广阔的风景。它是由詹姆斯·韦伯太空望远镜在近红外光下拍摄的多幅图像拼接而成,而且实际上它正在活跃地跳动。在中心的右边是一团明亮的白色螺旋星系,它们似乎正在相互扭曲。贯穿整个场景的是浅粉色的螺旋星系,看起来像风车在风中旋转。明亮的前景恒星,以蓝色为背景,以韦布突出的八尖衍射尖峰宣布自己的存在。不要错过一个不寻常的景象:在最下面一排,从最右边数第二个正方形。在它的右边缘,一个畸形的蓝色星系被蓝色和粉红色的闪亮星团包围着。影像来源:NASA,ESA,CSA,SteveFinkelstein(UTAustin),MicaelaBagley(UTAustin),RebeccaLarson(UTAustin)CEERS1019不仅因其存在的时间久远而引人注目,而且其黑洞的质量相对较小。这个黑洞的质量约为900万太阳质量,远远小于早期宇宙中存在的由其他望远镜探测到的其他黑洞。这些庞然大物的质量通常是太阳的10亿倍以上,而且它们更容易被探测到,因为它们更亮。(它们在积极地“吃掉”物质,当物质旋转到黑洞时,物质就会发光。)CEERS1019中的黑洞与我们银河系中心的黑洞更相似,后者的质量是太阳的460万倍。这个黑洞也没有之前探测到的更大质量的更大的黑洞那么亮。虽然这个黑洞更小,但它存在的时间要早得多,所以很难解释它是如何在宇宙开始后这么快就形成。研究人员早就知道,宇宙早期一定存在较小的黑洞,但直到韦伯开始观察,他们才能够做出明确的探测。(CEERS1019可能只会保持这一记录几个星期——于韦伯发现的其他更遥远黑洞的说法目前正在被天文学界仔细审查。)韦伯的数据实际上充斥着精确的信息,使得这些确认很容易从数据中提取出来。“用这台望远镜观察这个遥远的物体,就像观察我们附近星系中存在的黑洞的数据一样。”领导这项发现的德克萨斯大学奥斯汀分校的丽贝卡·拉森说。“有这么多谱线要分析!”研究团队不仅可以解开光谱中哪些发射来自黑洞,哪些来自其宿主星系,他们还可以确定黑洞吸收了多少气体,并确定其星系的恒星形成率。研究团队发现,这个星系在吸收尽可能多的气体的同时,也在产生新的恒星。他们通过图片来探究其中的原因。从视觉上看,CEERS1019看起来是三个明亮的团块,而不是一个单一的吸积盘。“我们不习惯在这么远的距离看到这么多的图像结构。”CEERS团队成员、纽约罗切斯特理工学院的杰汗·卡尔塔特普说。“星系合并可能是推动这个星系黑洞活动的部分原因,这也可能导致恒星形成增加。”这张图显示了目前宇宙中已知的最遥远的活动超大质量黑洞的探测结果。它们是由太空和地面上的一系列望远镜所发现。最近,詹姆斯·韦伯太空望远镜的宇宙演化宇宙演化早期发布科学(CEERS)调查发现了其中三颗。影像来源:NASA,ESA,CSA,LeahHustak(STScI)更遥远的黑洞,星系撞击现场CEERS调查范围很广,还有很多需要探索的地方。缅因州沃特维尔科尔比学院的团队成员戴尔·科切夫斯基和团队很快在数据中发现了另一对小黑洞。第一个在CEERS2782星系内,最容易辨认。没有任何尘埃遮挡韦伯的视野,因此研究人员可以立即确定它的黑洞在宇宙历史上的存在时间——存在于大爆炸11亿年后。第二个黑洞位于CEERS746星系,存在时间稍早,存在于大爆炸后10亿年。它明亮的吸积盘,它明亮的吸积盘,一个由气体和尘埃组成的环,围绕着它的超大质量黑洞,部分仍然被尘埃笼罩。科切夫斯基解释道:“中心黑洞是可见的,但尘埃的存在表明,它可能位于一个也在疯狂地释放恒星的星系内。”与CEERS1019中的黑洞一样,这两个黑洞也是“轻量级”——至少与这些距离上先前已知的超大质量黑洞相比是这样。它们的质量只有太阳的1,000万倍。“研究人员早就知道早期宇宙中一定存在质量较低的黑洞。韦伯是第一个能如此清晰地捕捉到它们的天文台。”科切夫斯基补充道。“现在我们认为低质量黑洞可能到处都是,等待被发现。”在韦伯之前,所有三个黑洞都太暗而无法被探测到。“使用其他望远镜,这些目标看起来像普通的恒星形成星系,而不是活跃的超大质量黑洞。”芬克尔斯坦补充道。韦伯灵敏的光谱也让这些研究人员能够测量早期宇宙中星系的精确距离,从而确定它们的年龄。研究团队成员、美国国家科学基金会NOIRLab的巴勃罗·阿拉巴尔·哈罗和德克萨斯大学奥斯汀分校的藤本诚治确定了11个在大爆炸后4.7亿到6.75亿年间存在的星系。它们不仅非常遥远,而且如此多的明亮星系被探测到也是值得注意的。研究人员推测,韦伯望远镜能探测到的星系比目前在这些距离上发现的要少。“被韦伯发回的遥远星系的大量非常详细的光谱所震撼”阿拉巴尔·哈罗说。“这些数据绝对令人难以置信。”这些只是CEERS调查的首批突破性发现。“到目前为止,对早期宇宙中物体的研究主要是理论性的研究。”芬克尔斯坦说。“有了韦伯,我们不仅可以看到极端距离的黑洞和星系,我们现在可以开始精确地测量它们。这就是这台望远镜的巨大威力。”在未来,韦伯的数据也可能被用来解释早期黑洞是如何形成,修正研究人员关于黑洞在宇宙历史的最初几亿年中如何生长和演化的模型。《天体物理杂志快报》已经接受了几篇关于CEERS调查数据的初步论文:由拉森领导的《ACEERSDiscoveryofanAccretingSupermassiveBlackHole570MyraftertheBigBang:IdentifyingaProgenitorofMassivez>6Quasars》;由科切夫斯基领导的《HiddenLittleMonsters:SpectroscopicIdentificationofLow-Mass,Broad-LineAGNatz>5withCEERS》;由阿拉巴尔·哈罗领导的《SpectroscopicconfirmationofCEERSNIRCam-selectedgalaxiesatz≃8−10》以及由藤本诚治领导的《CEERSSpectroscopicConfirmationofNIRCam-Selectedz≳8GalaxyCandidateswithJWST/NIRSpec:InitialCharacterizationoftheirProperties》。詹姆斯·韦伯太空望远镜是世界上首屈一指的太空科学天文台。韦伯将解开我们太阳系中的谜团,展望其他恒星周围的遥远世界,探索我们宇宙的神秘结构和起源以及我们在其中的位置。韦伯是由NASA及其合作伙伴ESA和CSA领导的一项国际计划。参考来源:https://www.nasa.gov/feature/goddard/2023/webb-detects-most-distant-active-supermassive-black-hole-to-date...PC版:https://www.cnbeta.com.tw/articles/soft/1369781.htm手机版:https://m.cnbeta.com.tw/view/1369781.htm

封面图片

韦伯望远镜发现迄今最古老黑洞

韦伯望远镜发现迄今最古老黑洞许多星系的中心都有一个超大质量黑洞,但科学家们目前尚不清楚这些黑洞是如何变得如此之大的。一种可能性是,它们由早期恒星坍缩产生的小黑洞形成,随着时间的推移,这些小黑洞结合在一起,形成一个超大质量黑洞。另一种说法是,它们是早期宇宙中大量气体直接塌缩而形成。在最新研究中,美国得克萨斯大学奥斯汀分校的丽贝卡·拉森及其同事们确定了迄今为止最早的黑洞,根据其与地球的距离,她们认为这个黑洞诞生于宇宙大爆炸后5.7亿年。此外,研究表明,这个黑洞的质量是太阳的1000万倍。拉森指出,这是早期宇宙中黑洞形成和生长的一个非常重要的未知领域,最新研究将有助科学家们揭示此类黑洞的形成原因。为识别出这个黑洞,拉森团队利用韦伯望远镜观察了一个星系,哈勃望远镜此前曾将该星系确定为宇宙早期已知最明亮的星系,但哈勃望远镜一直无法分辨出星系里面是什么。使用两台相机和两台分光镜,韦伯望远镜可分辨出星系发出的光信号的不同成分,并据此发现了这个黑洞。英国谢菲尔德大学的詹姆斯·穆兰尼说,这个黑洞的质量似乎表明,它不是由恒星质量的黑洞发展而来。相关研究已经提交论文预印本网站。...PC版:https://www.cnbeta.com.tw/articles/soft/1352643.htm手机版:https://m.cnbeta.com.tw/view/1352643.htm

封面图片

天文学家用韦伯望远镜揭开宇宙最古老低质量星系的秘密

天文学家用韦伯望远镜揭开宇宙最古老低质量星系的秘密罗格斯大学的天文学家利用詹姆斯-韦伯太空望远镜研究了沃尔夫-伦德马克-梅洛特星系,揭开了宇宙早期恒星形成的历史。他们的发现为星系如何演化以及温度在恒星形成中的作用提供了新的见解。资料来源:美国国家航空航天局面向宇宙的“考古发掘”艺术与科学学院物理与天文学系助理教授克里斯汀-麦奎恩(KristenMcQuinn)说:"通过如此深入的观察和如此清晰的观察,我们已经能够有效地回到过去,基本上是在进行一种考古挖掘,寻找宇宙历史早期形成的低质量恒星。"她领导的这项研究发表在《天体物理学报》。McQuinn认为,罗格斯大学高级研究计算办公室管理的Amarel高性能计算集群使研究小组能够计算银河系的恒星发展史。这项研究的一个方面是将一次大规模计算重复600次。她补充说,这项重大计算工作还有助于确认望远镜校准和数据处理程序,这将使更广泛的科学界受益。WLM星系部分区域的两幅景象,一幅由美国宇航局哈勃太空望远镜拍摄(左),另一幅由詹姆斯-韦伯太空望远镜拍摄。图片来源:Science:NASA,ESA,CSA,IPAC,KristenMcQuinn(RU),ImageProcessing:ZoltG.Levay(STScI),AlyssaPagan(STScI)低质量星系的重要性麦奎恩对所谓的"低质量"星系特别感兴趣。因为它们被认为是早期宇宙的主宰,研究人员可以利用它们来研究恒星的形成、化学元素的演化以及恒星形成对星系气体和结构的影响。它们很微弱,分布在天空中,构成了本地宇宙中的大多数星系。像韦伯望远镜这样先进的望远镜让科学家们能够近距离观察它们。WLM是德国天文学家马克斯-沃尔夫(MaxWolf)于1909年发现的一个"不规则"星系,这意味着它不具有明显的形状,如螺旋形或椭圆形,瑞典天文学家克努特-伦德马克(KnutLundmark)和英国天文学家菲力伯特-雅克-梅洛特(PhilibertJacquesMelotte)于1926年对它进行了更详细的描述。它位于本星系群的外围,本星系群是一个哑铃状的星系群,其中包括银河系。麦奎因指出,由于位于本星系群的边缘,WLM免受了与其他星系交融的破坏,使其恒星群处于原始状态,有利于研究。天文学家之所以对WLM感兴趣,还因为它是一个充满活力的复杂星系,拥有大量气体,能够积极地形成恒星。WLM银河系中的恒星形成为了了解银河系恒星形成的历史--即恒星在宇宙不同时期的诞生速度,麦奎恩和她的团队利用这架望远镜煞费苦心地将包含成千上万颗恒星的天空区域归零。为了确定恒星的年龄,他们测量了恒星的颜色(代表温度)和亮度。麦奎因说:"我们可以利用我们对恒星演化的了解,以及这些颜色和亮度所表明的情况,基本上确定星系恒星的年龄。"研究人员随后对不同年龄的恒星进行了计数,并绘制出了宇宙历史上恒星的诞生率。以这种方式对恒星进行编目向研究人员表明,随着时间的推移,WLM产生恒星的能力在起伏。研究小组的观测结果证实了科学家们早些时候利用哈勃太空望远镜所做的评估,这些观测结果表明,在宇宙历史的早期,该星系曾在30亿年的时间里产生过恒星。它停顿了一段时间,然后又重新点燃。她相信这种停顿是由早期宇宙的特定条件造成的:"那时的宇宙真的很热。我们认为,宇宙的温度最终加热了这个星系中的气体,使恒星的形成一度停止。冷却期持续了几十亿年,然后恒星形成再次开始。"这项研究是美国国家航空航天局"早期发布计划"的一部分,该计划指定科学家与太空望远镜科学研究所合作开展研究,旨在突出韦伯的能力,帮助天文学家为未来的观测做好准备。美国国家航空航天局于2021年12月发射了韦伯望远镜。这个大型镜面仪器在距离地球一百万英里的地方围绕太阳运行。科学家们争先恐后地在望远镜上研究一系列课题,包括早期宇宙的状况、太阳系的历史以及系外行星的搜寻。麦奎因说:"这项计划将产生许多尚未完成的科学成果。"相关文章:韦伯望远镜在极端恒星环境中发现生命的前身:水和简单的有机分子...PC版:https://www.cnbeta.com.tw/articles/soft/1422060.htm手机版:https://m.cnbeta.com.tw/view/1422060.htm

封面图片

NASA斯皮策望远镜发现仙女座超大质量黑洞的进食习惯

NASA斯皮策望远镜发现仙女座超大质量黑洞的进食习惯这些仙女座星系的图像使用的是美国宇航局退役的斯皮策太空望远镜的数据。上图显示了多个波长的图像,揭示了恒星、尘埃和恒星形成的区域。下图只显示了尘埃,更容易看到星系的底层结构。资料来源:NASA/JPL-Caltech在美国国家航空航天局(NASA)退役的斯皮策太空望远镜(SpitzerSpaceTelescope)拍摄的图像中,数千光年长的尘埃流流向仙女座星系中心的超大质量黑洞。原来,这些尘埃流可以帮助解释质量是太阳数十亿倍的黑洞是如何饱餐一顿,却又"安静"地吃东西的。当超大质量黑洞吞噬气体和尘埃时,这些物质在掉入黑洞之前会被加热,从而产生令人难以置信的光影效果--有时比整个星系的恒星还要亮。当物质以不同大小的团块形式被吞噬时,黑洞的亮度就会发生波动。但是,位于银河系(地球的母星系)和仙女座(我们最近的星系邻居之一)中心的黑洞是宇宙中最安静的吞噬者之一。它们发出的微弱光线在亮度上没有明显变化,这表明它们吃的是少量但稳定的食物流,而不是大块的食物。这些食物流以螺旋的方式一点一点地接近黑洞,就像水流顺着下水道旋转一样。今年早些时候发表的一项研究将"安静的超大质量黑洞以稳定的气体流为食"这一假设应用到了仙女座星系。作者利用计算机模型模拟了仙女座超大质量黑洞附近的气体和尘埃随着时间的推移会有怎样的表现。模拟结果表明,超大质量黑洞附近可能会形成一个小的热气体盘,并不断为其提供能量。无数的气体和尘埃流可以补充和维持这个圆盘。但研究人员也发现,这些气流必须保持在一个特定的大小和流速范围内;否则,物质会以不规则的团块形式落入黑洞,造成更多的光波动。这张仙女座星系中心的特写照片是由美国宇航局退役的斯皮策太空望远镜拍摄的,上面用蓝色虚线标注了两股尘埃流流向星系中心的超大质量黑洞(用紫色圆点表示)的路径。资料来源:NASA/JPL-Caltech当作者将他们的发现与来自斯皮策和美国宇航局哈勃太空望远镜的数据进行比较时,他们发现斯皮策之前识别出的尘埃螺旋符合这些限制条件。由此,作者得出结论,这些螺旋体正在为仙女座的超大质量黑洞提供能量。加那利群岛天体物理研究所和慕尼黑大学天文台的天体物理学家阿尔穆德纳-普列托(AlmudenaPrieto)是今年发表的研究报告的共同作者之一。"我们有了20年前的数据,这些数据告诉了我们一些我们最初收集这些数据时没有意识到的东西。"斯皮策号于2003年发射升空,由美国宇航局喷气推进实验室(JPL)负责管理,它利用人眼看不见的红外光研究宇宙。不同的波长显示了仙女座的不同特征,包括较热的光源(如恒星)和较冷的光源(如尘埃)。通过分离这些波长并单独观察尘埃,天文学家可以看到星系的"骨架"--气体凝聚和冷却的地方,有时会形成尘埃,为恒星的形成创造了条件。仙女座星系的这一景象给我们带来了一些惊喜。例如,虽然仙女座星系和银河系一样是一个螺旋星系,但它的中心是一个巨大的尘埃环,而不是环绕其中心的明显的臂。图像还显示,在环的一部分有一个二级洞,一个矮星系从那里穿过。仙女座靠近银河系,这意味着从地球上看它比其他星系更大:用肉眼看,仙女座的宽度大约是月球宽度的六倍(约3度)。即使斯皮策望远镜的视场比哈勃望远镜更宽,它也必须拍摄11000张快照,才能绘制出仙女座的全貌。JPL为位于华盛顿的美国宇航局科学任务局管理斯皮策太空望远镜任务,直到该任务于2020年1月退役。科学运作在加州理工学院的斯皮策科学中心进行。航天器的运行由位于科罗拉多州利特尔顿的洛克希德-马丁航天公司负责。数据存档在加州理工学院IPAC管理的红外科学档案馆。加州理工学院为美国国家航空航天局管理JPL。编译自/scitechdaily...PC版:https://www.cnbeta.com.tw/articles/soft/1432516.htm手机版:https://m.cnbeta.com.tw/view/1432516.htm

封面图片

幼年即巨人 韦伯望远镜揭示超大质量黑洞的成长过程

幼年即巨人韦伯望远镜揭示超大质量黑洞的成长过程詹姆斯-韦伯太空望远镜(JWST)在服役的第一年里,在我们夜空的一个极小区域里发现了一堆小红点,这可能是一个意想不到的突破。通过老式哈勃太空望远镜的"眼睛",这些天体与普通星系无法区分。"JWST并不是为这一特定目的而开发的,但它帮助我们确定了在宇宙遥远的过去发现的微弱的小红点是质量极大的黑洞的小型版本。这些特殊的天体可能会改变我们对黑洞起源的看法,"该研究的第一作者、奥地利科学技术研究所(ISTA)助理教授乔瑞特-马特希(JorrytMatthee)说。"目前的发现可能会让我们离解答天文学中最大的难题之一更近一步:根据目前的模型,早期宇宙中的一些超大质量黑洞只是生长得'太快'了。那么它们是如何形成的呢?"巨型类星体和小红点。NASA/ESA/CSA詹姆斯-韦伯太空望远镜(JWST)NIRCam拍摄的发光类星体J1148+5251的照片,这是一个极其罕见的100亿太阳质量的活跃超大质量黑洞。类星体的光是橙色的星状光源,有六个清晰的衍射尖峰,是在130亿年前发出的。年轻宇宙中存在如此巨大的黑洞,对黑洞和星系形成理论提出了重要挑战。与此同时,图像还捕捉到了小的点状红色物体,即所谓的小红点。几乎每一张JWST的深空图像中都会出现几个这样的天体。与类星体J1148+5251一样,这些天体发出的光(在这些情况下是125亿年前发出的)也是由超大质量黑洞驱动的。不过,这些黑洞的质量要低一百到一千倍,而且被尘埃严重遮挡(使其呈现红色)。这些小红点可能代表了处于类星体发光阶段之前的演化阶段的星系,因此有助于研究人员了解超大质量黑洞在遥远星系中的形成和作用。该图像是EIGER项目的一部分。资料来源:NASA、ESA、CSA、J.Matthee(ISTA)、R.Mackenzie(苏黎世联邦理工学院)、D.Kashino(日本国家天文台)、S.Lilly(苏黎世联邦理工学院)宇宙的不归点长期以来,科学家们一直认为黑洞是一种数学奇观,直到它们的存在变得越来越明显。这些奇特的宇宙无底洞可能具有如此紧凑的质量和强大的引力,以至于任何东西都无法逃脱它们的吸引力--它们吸进任何东西,包括宇宙尘埃、行星和恒星,并使其周围的空间和时间发生变形,以至于连光都无法逃脱。爱因斯坦一个多世纪前发表的广义相对论预言,黑洞可以有任何质量。其中一些最引人入胜的黑洞是超大质量黑洞(SMBHs),它们的质量可以达到太阳质量的数百万到数十亿倍。天体物理学家一致认为,几乎每个大星系的中心都有一个超大质量黑洞。人马座A*是银河系中心的一个SMBH,其质量是太阳的400多万倍,这一证据获得了2020年诺贝尔物理学奖。质量太大,不可能存在然而,并非所有的SMBH都是一样的。人马座A*可以比作一座沉睡的火山,而有些SMBH则通过吞噬天文数字级的物质而极速增长。因此,它们变得非常明亮,直到不断膨胀的宇宙边缘都能观测到它们。这些SMBH被称为类星体,是宇宙中最亮的天体之一。"类星体的一个问题是它们中的一些似乎质量过大,从观测类星体的宇宙年龄来看质量太大。我们称它们为'问题类星体',"Matthee说。"如果我们考虑到类星体起源于大质量恒星的爆炸--而且我们从一般物理定律中知道了它们的最大增长速度,那么其中一些类星体的增长速度看起来超过了可能的范围。这就好比一个五岁的孩子长到了两米高。"他解释说。SMBH的生长速度可能比我们最初想象的还要快吗?或者它们的形成方式不同?JorrytMatthee,奥地利科技研究所(ISTA)助理教授巨型宇宙怪兽的小型版本现在,Matthee和他的同事们确定了在JWST图像中以小红点形式出现的天体群。同时,他们还证明这些天体是SMBH,但不是质量过大的SMBH。确定这些天体是SMBH的关键在于探测到了具有宽线剖面的Hα光谱发射线。Hα线是可见光深红色区域的光谱线,是氢原子受热时发出的。光谱的宽度可追踪气体的运动。"Hα线的基底越宽,气体的速度就越高。因此,这些光谱告诉我们,我们看到的是一个非常小的气体云,它的运动速度非常快,并围绕着像SMBH这样质量非常大的东西运行,"Matthee说。然而,这些小红点并不是在超大质量SMBH中发现的巨大宇宙怪兽。"'问题类星体'是蓝色的,非常明亮,质量是太阳的数十亿倍,而小红点更像是'类星体宝宝'。它们的质量介于一千万到一亿个太阳质量之间。此外,它们呈现红色是因为它们布满了尘埃。灰尘遮住了黑洞,使颜色变红,"Matthee说。但最终,从黑洞中流出的气体将刺破尘茧,巨行星将从这些小红点中演化出来。因此,这位ISTA天体物理学家和他的团队认为,这些小红点是巨型蓝色SMBH的红色小版本,处于问题类星体出现之前的阶段。"更详细地研究超大质量SMBH的婴儿版,将让我们更好地了解问题类星体是如何存在的。"一项"突破性"技术Matthee和他的团队之所以能找到婴儿类星体,要归功于EIGER(再电离纪元中的发射线星系和星系间气体)和FRESCO(第一再电离纪元光谱完整观测)合作项目获得的数据集。这些都是Matthee参与的一个大型和一个中型JWST计划。去年12月,《物理世界》杂志将EIGER列为2023年年度十大突破之一。"EIGER旨在专门研究罕见的蓝色超大质量类星体及其环境。它并不是为了寻找小红点而设计的。但我们在同一个数据集中偶然发现了它们。这是因为,通过使用JWST的近红外相机,EIGER获取了宇宙中所有天体的发射光谱,"Matthee说。"如果你竖起食指并完全伸直手臂,我们探索的夜空区域大约相当于你指甲表面的二十分之一。到目前为止,我们可能只触及了表面。"Matthee相信,目前的研究将开辟许多途径,并有助于回答一些有关宇宙的重大问题。"黑洞和SMBH可能是宇宙中最有趣的东西。很难解释它们为什么存在,但它们确实存在。我们希望这项工作能帮助我们揭开宇宙最大的神秘面纱之一。编译自/scitechdaily...PC版:https://www.cnbeta.com.tw/articles/soft/1423721.htm手机版:https://m.cnbeta.com.tw/view/1423721.htm

封面图片

欧空局XMM-牛顿号天文望远镜探测到黑洞风阻碍了恒星的形成

欧空局XMM-牛顿号天文望远镜探测到黑洞风阻碍了恒星的形成这幅艺术家的作品展示了从马卡里安817星系中心喷出的超高速风。这些风以每小时数百万公里的速度从广阔的太空区域中清除星际气体。没有了这些气体,星系就无法形成新的恒星,星系中心的黑洞也就没有什么可吃的了。图片来源:欧空局每个大星系的中心都有一个超大质量黑洞,它巨大的引力从周围吸入气体。当气体向内盘旋时,会在黑洞周围形成一个扁平的"吸积盘",并在那里发热和发光。随着时间的推移,最靠近黑洞的气体越过了不归点,被吞噬殆尽。然而,黑洞只会吞噬一部分向其旋转的气体。在环绕黑洞的过程中,一些物质会被甩回太空,就像一个蹒跚学步的孩子会把盘子里的东西打翻一样。在更戏剧性的情况下,黑洞会把整个餐桌掀翻:吸积盘中的气体以极快的速度向四面八方飞散,以至于周围的星际气体都被清空了。这不仅剥夺了黑洞的食物,还意味着在大片区域内无法形成新的恒星,从而改变了星系的结构。耀眼的蓝色恒星环绕着这个螺旋星系明亮、活跃的核心。它被称为马卡里安817,位于4.3亿光年外的天龙座北部。在远离中心的地方,这个星系显示出强烈的恒星形成区,以及沿着旋臂的星际尘埃暗带。银河系中心的怪兽黑洞的质量是太阳的4000万倍。它被一个巨大的物质圆盘包围着,超大质量黑洞正以每小时数百万公里的速度向太空喷射物质。这可以从银河系中心闪耀的明亮白光中看到。这张NASA/ESA哈勃太空望远镜图片是2009年8月2日用广角相机3拍摄的。图片来源:NASA、ESA和哈勃SM4ERO小组前所未有的观察在此之前,这种超快的"黑洞风"只在极其明亮的吸积盘中被探测到,因为吸积盘吸积物质的能力已经达到极限。这一次,XMM-牛顿在一个非常普通的星系中探测到了超快的风,可以说它"只是在吃零食"。"如果把风扇开到最大,你可能会预料到风速会非常快。在我们研究的这个名为马尔卡里安817的星系中,风扇的功率设置较低,但仍然产生了能量惊人的风。"本科生研究员米兰达-扎克(密歇根大学)指出,她在这项研究中发挥了核心作用。"观测到超高速风是非常罕见的,而探测到具有足够能量来改变其宿主星系特征的风就更少见了。马尔卡里安817在并不特别活跃的情况下,产生这些风的时间长达一年左右,这一事实表明,黑洞对其宿主星系的重塑可能远远超出人们的想象,"合著者、意大利罗马特雷大学天文学家埃利亚斯-卡蒙(EliasKammoun)补充说。XMM-牛顿(X-射线多镜任务)太空望远镜的艺术效果图。图片来源:D.Ducros;ESA/XMM-Newton,CCBY-SA3.0IGO被风阻挡的X射线活跃的星系中心会发出包括X射线在内的高能量光线。马卡里安817让研究人员眼前一亮,因为它变得异常安静。米兰达利用美国宇航局的斯威夫特天文台观测了这个星系:"X射线信号如此微弱,以至于我确信自己做错了什么!"利用欧空局更灵敏的X射线望远镜XMM-牛顿进行的后续观测揭示了真实情况:来自吸积盘的超高速风就像一块裹尸布,挡住了从黑洞周围(称为日冕)发出的X射线。这些测量结果得到了美国宇航局NuSTAR望远镜观测结果的支持。对X射线测量结果的详细分析显示,马尔卡里安817的中心并没有发出一"股"气体,而是在吸积盘的广大区域内产生了一股狂风。这股风暴持续了数百天,至少由三种不同的成分组成,每种成分的运动速度都是光速的几分之一。这幅艺术家的作品展示了从马卡里安817星系中心喷出的超高速风。这些风以每小时数百万公里的速度从广阔的太空区域中清除星际气体。没有了这些气体,星系就无法形成新的恒星,星系中心的黑洞也就没有什么可吃的了。插图显示了银河系中心的情况。一个超大质量黑洞从周围吸入气体,形成一个炙热、明亮的"吸积盘"(橙色)。造成风(白色)的原因是圆盘内的磁场,它以难以置信的高速将粒子抛向四面八方。这些风有效地阻挡了黑洞周围极热等离子体(称为日冕)发出的X射线(蓝色)。这解决了我们在理解黑洞和黑洞周围星系如何相互影响方面的一个未解之谜。包括银河系在内的许多星系,其中心周围似乎都有大片区域,但在这些区域中却很少有新恒星形成。这可以用黑洞风清除恒星形成气体来解释,但这只有在黑洞风的速度足够快、持续时间足够长,并且是由具有典型活动水平的黑洞产生的情况下才可行。"黑洞研究中的许多悬而未决的问题都需要通过长时间的观测来捕捉重要事件。这凸显了XMM-牛顿任务对未来的极端重要性。"欧空局XMM-牛顿项目科学家诺伯特-沙特尔(NorbertSchartel)说:"没有其他任务能够将高灵敏度和长时间、不间断观测的能力结合起来。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1418837.htm手机版:https://m.cnbeta.com.tw/view/1418837.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人