中国第四代半导体迎来突破 6英寸氧化镓单晶实现产业化

中国第四代半导体迎来突破6英寸氧化镓单晶实现产业化6英寸导电型氧化镓衬底杭州镓仁半导体,也成为国内首个掌握6英寸氧化镓单晶衬底制备技术的产业化公司。据介绍,氧化镓因其优异的性能和低成本的制造,成为目前最受关注的超宽禁带半导体材料之一,被称为第四代半导体材料。该材料主要用于制备功率器件、射频器件及探测器件,在轨道交通、智能电网、新能源汽车、光伏发电、5G移动通信、国防军工等领域,均具有广阔应用前景。6英寸非故意掺杂(上)与导电型(下)氧化镓单晶该公司表示,此次制备6英寸氧化镓衬底采用的铸造法,具有以下显著优势:第一,铸造法成本低,由于贵金属Ir的用量及损耗相比其他方法大幅减少,成本显著降低;第二,铸造法简单可控,其工艺流程短、效率高、尺寸易放大;第三,铸造法拥有完全自主知识产权,中国和美国专利已授权,为突破国外技术垄断,实现国产化替代奠定坚实基础。目前而言,日本的NCT在氧化镓衬底方面,仍占据着领先地位,但国内也总体呈现追赶态势。...PC版:https://www.cnbeta.com.tw/articles/soft/1424489.htm手机版:https://m.cnbeta.com.tw/view/1424489.htm

相关推荐

封面图片

中国商务部决定对镓、锗相关物项实施出口管制 全球半导体产业将受影响

中国商务部决定对镓、锗相关物项实施出口管制全球半导体产业将受影响众所周知,以上相关镓类物项和锗类物项大都属于重要的化合物半导体材料,而金属镓、金属锗、区熔锗锭、锗外延生长衬底则属于制备镓类或锗类相关化合物半导体所须的材料。作为全球金属镓、金属锗储量及产量最大的国家之一,中国此次对镓、锗相关物项实施出口管制,无疑将会对全球的半导体产业造成重大影响。具体对镓、锗相关物项资料,由芯智讯整理如下:金属镓金属镓是一种稀有的蓝色或银白色的金属,其产品熔点很低,但沸点很高,是一种性能优良的电子原材料,下游应用领域广泛,主要应用于制作光学玻璃、真空管、半导体的重要原料。根据美国地质调查局(USGS)公布的数据,目前全球金属镓的储量约为27.93万吨,而中国的储量最多,达到19万吨,占全球储量的68%左右;相比之下,美国的储量还不到中国的1/40,只有0.45万吨。从产量来看,中国产量占比全球镓产量最高。德国和哈萨克斯坦分别于2016年和2013年停止了镓生产。(2021年德国宣布将在年底前重启初级镓生产),匈牙利和乌克兰分别于2015年和2019年停止镓生产,中国镓占比全球镓产量持续提升,截止2021年,占比全球镓产量已超90%。氮化镓氮化镓是近年来比较热门的第三代化合物半导体材料。相对于传统的硅(Si)和砷化镓(GaAs)半导体材料,氮化镓具有许多优点,例如高电子流动率、高饱和漂移速度、高电子密度和高热导率。这些特性使氮化家在高功率电子器件(比如快充充电器)、高速光电子器件、高亮度发光二极管(LED)和高效能太阳能电池等领域有广泛应用。此外,氮化家还被用于制造紫外线激光器、无线电通信设备、医疗器械等。氮化镓氧化镓则是一种“超宽禁带半导体”材料,也属于“第四代半导体”,与第三代半导体碳化硅、氮化镓相比,氧化镓的禁带宽度达到了4.9eV,高于碳化硅的3.2eV和氮化镓的3.39eV,更宽的禁带宽度意味着电子需要更多的能量从价带跃迁到导带,因此氧化镓具有耐高压、耐高温、大功率、抗辐照等特性。并且,在同等规格下,宽禁带材料可以制造diesize更小、功率密度更高的器件,节省配套散热和晶圆面积,进一步降低成本。值得注意但是,在2022年8月,美国商务部产业安全局(BIS)对第四代半导体材料氧化镓和金刚石实施出口管制,认为氧化镓的耐高压特性在军事领域的应用对美国国家安全至关重要。此后,氧化镓在全球科研与产业界引起了更广泛的重视。磷化镓磷化镓是由元素镓与元素磷合成的Ⅲ—Ⅴ族化合物半导体,常温下其纯度较高的为橙红色透明固体。磷化镓是制作半导体可见发光器件的重要材料,主要用作制造整流器,晶体管、光导管、激光二极管和致冷元件等。磷化镓和砷化镓是具有电致发光性能的半导体,是继锗和硅之后的所谓第三代半导体。与砷化镓不同,磷化镓是一种间接带隙材料。当引入能形成等电子陷阱的杂质后,其发光效率会大大提高,并且能根据引入杂质的不同而发出不同颜色的光来。例如在磷化镓中掺入氮则发绿Chemicalbook光,掺入锌-氧对则发红光,因此磷化镓是制作可见光发光二极管和数码管等光电显示器件的重要材料,此外还可用来制作光电倍增管、光电存储器、高温开关等器件。砷化镓砷化镓是当前主流的第二代化合物半导体材料之一。其具有高频率、高电子迁移率、高输出功率、高线性以及低噪声等特点,在光电和射频领域有着非常广泛的应用。比如,砷化镓可以用来制作LED(发光二极管),主要是黄光、红光和红外光(氮化镓禁带更宽,主要用来发蓝光、绿光和紫外光),具有效率高、器件结构精巧简单、机械强度大、使用寿命长等特点。如果砷化镓作为发光材料,加上泵浦源和谐振腔,即可选频制成激光器。典型应用就是VCSEL(垂直腔表面发射激光器),广泛应用在短距离数据中心光纤通信,结构光/TOF人脸识别等。另外,砷化镓的电子迁移率是硅的五倍,HBT的Ft高达45GHz,0.25umEmodepHEMT的Ft更是高达70GHz,因此砷化镓非常适合设计Sub-7GHz的射频器件。蜂窝和WLANPA也常用砷化镓HBT设计;开关、LNA等则采用砷化镓pHEMT工艺。铟镓砷铟镓砷是一种III-V族半导体,具有晶格匹配性好、带隙可调节、大尺寸产品均匀性好等优点,是第四代半导体材料,也是新一代红外发光材料,在光电芯片、红外探测器、传感器等领域拥有巨大应用价值。在光电芯片领域,为制造体积更小、功能集成度更高的晶体管,传统硅材料已无法满足需求,砷化铟镓可达到此要求。在红外探测器领域,砷化铟镓可用作短波红外光电材料,制造短波红外探测器,也可以与其他III-V族半导体相配合制备超晶格材料,例如以磷化铟为衬底,外延生长砷化铟镓,制备得到InP/InGaAs超晶格,此材料稳定性高、均匀度高,以其为敏感材料制造而成的红外探测器,具有高灵敏度、高可靠性、低功耗、低成本等优点,可以广泛应用在智能驾驶、安防监控、仪器仪表等领域。在传感器领域,由于砷化铟镓灵敏度高,可制造InGaAs红外扫描相机,是OCT(光学相干断层扫描)的关键组成部分,可提高人体组织穿透性,并实现高速成像。OCT是新型医学影像技术,在生物组织活体检测与成像方面效果显著,在临床上可以广泛应用在眼科、牙科、皮肤科、癌症早期诊断等方面,是医疗领域重要疾病诊断技术之一,此外也可以应用于工业测量领域。硒化镓硒化镓是一种重要的二元半导体,它具有各向异性、较宽的带隙、新奇的光学和电学性质等特性。这使得硒化镓在太阳能电池、光探测器及集成光电子器件等领域有很好的应用前景。另外,由于硒化家晶体具有优异的抗干扰性能和低损耗性能,它可以用于高精度技术应用,如高精度电子仪器、电气控制系统和光学系统。此外,硒化家晶体还具有优异的耐腐蚀性和低氧化性,可以用于各种酸性和碱性腐蚀性环境中的应用,是一种优良的精密机械制造材料。锑化镓锑化镓属于III-V族化合物窄带隙半导体,外观为灰白色晶体状,为立方晶系、闪锌矿结构。锑化镓是第四代半导体材料中窄带隙半导体的代表性产品之一,具有电子迁移率高、功耗低的特点,其禁带宽度可以在较宽的范围内进行调节,在中长波红外波段探测性能优异。锑化镓常用作衬底材料,可以广泛应用在红外探测器、激光器、发光二极管、光通信、太阳能电池等行业中。在光通信中,波长越长的光在传输过程中损耗越低,工作波长2-4μm的非硅材料光传输损耗更低,锑化镓可以工作在此波段范围内,并且能够与其他III-V族材料晶格常数相匹配,制得的GaSb/GaInAsSb等产品光谱范围符合光通信的低损耗要求。据了解,发展锑化物半导体材料是整个光通讯领域中核心技术发展的战略方向之一。锑化镓半导体主要应用于光纤通讯的发射基站,其传输信号的频率可以达到300赫兹以上。锑化镓(锑化物半导体材料)未来在6G等应用上,可能是不可替代的传输载体。在红外探测器领域,锑化镓凭借光谱覆盖范围宽、频带宽度可调节的优势,以其为衬底制备的二类超晶格材料例如InAs/GaSb探测性能优异、成像质量高,可制造高性能红外焦平面成像阵列,特别是在中红外探测器制造中具有不可替代性,而红外焦平面成像阵列具有多色、大面阵、功能集成化的特点,是第三代红外探测器。除此之外,锑化镓在太阳能电池中也有巨大应用价值。2017年7月,美国乔治华盛顿大学与其他科研机构、高校...PC版:https://www.cnbeta.com.tw/articles/soft/1368771.htm手机版:https://m.cnbeta.com.tw/view/1368771.htm

封面图片

氮化镓,再起风云

氮化镓,再起风云作为第三代半导体材料,碳化硅相较于硅材料,具有大禁带宽度、高击穿电场、高饱和电子漂移速度、高热导率、高抗辐射等特点,因而广泛应用于新能源车的主驱逆变器、OBC、DC/DC转换器和非车载充电桩等关键电驱电控部件。但当我们看向整个第三代半导体市场时,会发现与碳化硅类似的氮化镓(GaN),受重视程度却稍逊一筹,但实质上氮化镓这一种材料在性能上独具特色,具有很多碳化硅所没有的优势,如今东芝、罗姆等大厂们先后入场,让这一材料成为了功率半导体新的增长点。仅从物理特性来看,氮化镓甚至比碳化硅更适合做功率半导体的材料。有研究比较了这两种材料的“Baliga性能指数(半导体材料相对于硅的性能数值,即硅为1)”,4H-碳化硅为500,氮化镓为900,效率相对更高。此外,碳化硅的绝缘破坏电场强度(表示材料的耐电压特性)为2.8MV/cm,氮化镓为3.3MV/cm,这一数值也比碳化硅来得高。一般而言,低频工作时的功耗损失是绝缘破坏电场的三次方,高频工作时的功耗损失是绝缘破坏电场的2次方,成反比例关系,所以,数值更高的氮化镓的在功率损耗上更低,即工作效率比碳化硅更高。有媒体指出,随着氮化镓耐压能力的进一步提升,其可实现承受1200V超高电压,并具备更高性价比,在新能源市场的应用优势将会逐步推出,市场前景更为广阔。也就是说,未来的氮化镓有望超越碳化硅,成为第三代半导体中最闪耀的一颗星星,而有关它的技术上的更迭变化,成为了新的功率半导体风向标。大厂涌向氮化镓作为第三代半导体的翘楚,大量厂商力图在GaN上实现技术突破以抢占市场先机,为了让功率GaN达到更高的击穿电压(>1200V),部分技术创新已经登上舞台,例如垂直GaN-on-GaN,以及通过使用电隔离衬底实现更多单片集成,例如IMEC在GaN-on方面的工作-SOI或GaN-on-QST。更值得大家关注的是,更多功率器件厂商加入到这场混战当中,有关技术方面的动向尤其值得我们关注。日本大厂东芝旗下的东芝器件及存储在“TECHNO-FRONTIER2023”上展出了最新一代碳化硅功率器件和氮化镓功率器件,其计划于2024年进入氮化镓功率器件市场,这也是它首款氮化镓产品的第一次展出。东芝首款氮化镓产品,即击穿电压为650V、导通电阻为35mΩ(典型值)的器件,该公司独特的常开器件和共源共栅配置使得可以使用外部栅极电阻来控制开关期间的电压变化,并确保高阈值电压并减少故障发生的可能性。东芝本次展示了配备氮化镓功率器件样品的2.5kW图腾柱PFC评估板和2.0kW全桥LLC评估板,根据该公司对各板卡进行的效率评估,峰值效率分别达到99.4%和98.4%,并且“在所有负载下保持高效率”,其性能相较于其他功率器件厂商并不逊色多少。此外,罗姆半导体(ROHM)作为老牌大厂,早在2006年就开始研发氮化镓产品,2021年推出了150VGaN器件技术,2023年开始量产650V耐压产品,可以说其在氮化镓领域的技术积累颇为丰厚。今年7月,罗姆发布了新产品EcoGaN™PowerStageIC“BM3G0xxMUV-LB”,该将栅极驱动器和GaNHEMT一体化封装,将FET性能最大化,GnA决定效率值,组合在一起实现高速开关,更加充分地发挥氮化镓器件的性能。相比SiMOSFET,开关损耗大幅度降低,外围电路更简单,仅需一个外置器件,另外,相比SiMOSFET+散热片,器件体积显著减小。有助于应用产品的小型化。该产品可以替代现有的SiMOSFET,从而使器件体积减少99%,功率损耗降低55%,有助于减少服务器和AC适配器的体积以及损耗。氮化镓的下一步当第三代半导体的下一步发展路线走向氮化镓之际,更多机构与厂商力图在GaN上实现技术突破以抢占市场先机,为了让功率GaN达到更高的击穿电压(>1200V),部分技术创新已经登上舞台,例如垂直型GaN-on-GaN,以及通过使用电隔离衬底实现更多单片集成,例如IMEC在GaN-on方面的工作。首先是垂直型GaN-on-GaN,目前GaN器件分为平面型与垂直型两种技术路线,平面型GaN器件通常基于非本征衬底,如Si、SiC、蓝宝石(Sapphire)等,出于成本等原因,利用异质结的平面型GaN器件逐渐成为了主流。Sapphire衬底制备技术成熟,价格低廉,化学稳定性好,高温热稳定性好,能够支持的衬底尺寸大,但其热导率较低,需要良好散热才能更好地实现应用。Si衬底的GaN制备技术工艺成熟、衬底尺寸大、晶体质量高以及与Si基集成电路制造工艺兼容,但缺点是晶格失配率高达17%,导致位错密度和应力大于其他衬底,影响器件的可靠性。SiC衬底与GaN的失配率低,在SiC衬底上可以获得高质量的GaN基半导体,并拥有出色的导热性能,但制备成本较高,限制了其在GaN功率器件领域的应用。综合来看,平面型的不同衬底各自有难以改变的缺点,难以满足大家的需求,不过随着近年来高质量单晶GaN衬底的商业化,与垂直型Si或SiC电力电子器件结构相近的垂直型GaN(GaN-on-GaN)器件得到快速发展,并逐步由实验室研究迈向产业化。垂直型GaN器件相较于三种衬底的平面型,有更为明显的优势:电流通道在体内,不易受器件表面陷阱态的影响,动态特性较为稳定;垂直结构器件可在不增加器件面积的前提下通过增加漂移区厚度直接提升耐压,因此与横向结构相比更易于实现高的击穿电压;电流导通路径的面积大,可以承受较高的电流密度;由于电流在器件内部更为均匀,器件的热稳定性佳;垂直结构器件易于实现雪崩特性,在工业应用中优势明显。今年5月,欧洲YESvGaN联盟在PCIMEurope2023上展示了新型垂直GaN功率晶体管方案,其成本可降低至与硅基氮化镓器件相当。据介绍,该联盟正在开发一种“垂直型GaN薄膜晶体管“技术,该技术可以不采用氮化镓衬底,二是采用硅和蓝宝石衬底,通过氮化镓异质外延生长来获得成本优势。简单来说,他们在氮化镓生长后,移除器件区域下方的硅、蓝宝石衬底以及缓冲层,并从背面直接连接到GaN层金属触点。该技术目标是使用直径12英寸(300毫米)的硅或蓝宝石晶圆,来开发650-1200V的准垂直GaN功率晶体管,同时兼顾垂直结构的优点和硅基GaN/蓝宝石GaN的低成本优势。此外,今年1月,美国一家基于专有的氮化镓(“GaN”)加工技术开发创新型高压功率开关元件的半导体器件公司OdysseySemiconductorTechnologies,Inc宣布,公司的垂直GaN产品样品制作完成,并于2023年第一季度开始向客户发货。其正在美国制造工作电压为650V和1200V的垂直氮化镓(GaN)FET晶体管样品。该公司表示,垂直结构将为650和1200伏器件提供更低的导通电阻和更高的品质因数,其导通电阻仅为碳化硅(SiC)的十分之一,并且工作频率明显更高。据介绍,Odyssey的垂直GaN方法将比碳化硅或横向GaN提供比硅更大的商业优势,垂直GaN在竞争技术无法达到的性能和成本水平上比碳化硅具有10倍的优势。在垂直型结构之外,是更高的集成度。需要注意的是,如今GaN电力电子器件仍由分立元件主导,这些元件由产生开关信号的外部驱动器IC驱动,为了能充分利用GaN提供的快速开关速度,单片集成功率器件和驱动器功能也是重要的发展方向之一。目前,绝大多数的GaN功率系统都是由多个晶片组成。这些氮化镓元件在整合至印刷电路板(PCB)以前都是独立元件,制程中会产生寄生电感,降低元件性能。以驱动器为例,当多个独立电晶体的驱动器被置于不同晶片时,驱动器输出级与电晶体输入级之间会产生大量的寄生电感,半桥电路中间的交换节点也会深受其害。以氮化镓(GaN)...PC版:https://www.cnbeta.com.tw/articles/soft/1381939.htm手机版:https://m.cnbeta.com.tw/view/1381939.htm

封面图片

意法半导体“三箭齐发”扩产,折射欧盟芯片自主“大战略”

意法半导体“三箭齐发”扩产,折射欧盟芯片自主“大战略”意法半导体(STMicroelectronics)本月正式官宣其又一大扩产计划,将在意大利卡塔尼亚(Catania)投资7.3亿欧元建造一条6英寸碳化硅衬底生产线,预计于2023年投产。这也是意法半导体近期继意大利Agrate和法国Crolles的12英寸新线后,宣布的第三项重大扩产计划。PC版:https://www.cnbeta.com/articles/soft/1329891.htm手机版:https://m.cnbeta.com/view/1329891.htm

封面图片

第四代半导体氧化镓,浙大杭州科创中心新技术路线制备2英寸晶圆#抽屉IT

封面图片

捷捷微电:功率半导体 6 寸线项目已具备批量生产能力

捷捷微电:功率半导体6寸线项目已具备批量生产能力针对公司的6寸线项目目前的进展情况,捷捷微电近日在机构调研时表示,公司“功率半导体6英寸晶圆及器件封测生产线”项目定位于功率半导体芯片生产线,最小线宽达0.35um;目前已具备批量生产能力,产品包括单双向ESD芯片、稳压二极管芯片、开关管芯片、FRED芯片、高压整流二极管芯片、平面可控硅芯片、肖特基芯片和VDMOS芯片等等。产线一期规划3万片/月,现已实现1万片/月产出。

封面图片

意法半导体在意新建碳化硅产业园落成后晶圆产量可达 1.5 万片 / 周

意法半导体在意新建碳化硅产业园落成后晶圆产量可达1.5万片/周6月6日,意法半导体宣布,将在意大利卡塔尼亚新建一座集8英寸碳化硅(SiC)功率器件和模块制造、封装、测试于一体的综合性大型制造基地。该项目预计2026年运营投产,在2033年前达到全部产能,在全面落成后,晶圆产量可达1.5万片/周。该项目总投资额预计约为50亿欧元,意大利政府将按照《欧盟芯片法案》框架提供约20亿欧元的资金支持。

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人