比盐粒还小的微型芯片未来有望改变医学传感器技术

比盐粒还小的微型芯片未来有望改变医学传感器技术传感器网络的设计使芯片可以植入人体或集成到可穿戴设备中。每个亚毫米大小的硅传感器都模仿大脑神经元通过尖峰电活动进行交流的方式。传感器检测到特定的尖峰事件,然后利用无线电波实时无线传输数据,从而节省了能源和带宽。布朗大学博士后研究员、该研究的第一作者李继勋(JihunLee)说:"我们的大脑以一种非常稀疏的方式工作。神经元不会一直发射。它们压缩数据,稀疏地发射,因此效率非常高。我们的无线通信方法就是在模仿这种结构。传感器不会一直发送数据--它们只会在需要时发送相关数据,就像短暂的电脉冲一样,而且它们能够独立于其他传感器发送数据,无需与中央接收器协调。通过这样做,我们可以节省大量能源,避免中央接收器中心被意义不大的数据淹没。"这种射频传输方案还使系统具有可扩展性,并解决了当前传感器通信网络的一个常见问题:它们必须完全同步才能正常工作。研究小组在《自然-电子学》(NatureElectronics)杂志上撰文,介绍了一种新颖的无线通信网络方法,这种网络可以从数千个微电子芯片中高效地传输、接收和解码数据,而每个芯片的大小都不超过一粒盐。图片来源:NickDentamaro/布朗大学研究人员说,这项工作标志着大规模无线传感器技术向前迈出了重要一步,有朝一日可能会帮助科学家们确定如何从这些小小的硅器件中收集和解读信息,特别是由于现代科技的发展,电子传感器已变得无处不在。布朗大学工程学院教授、该研究的资深作者阿尔托-努尔米科(ArtoNurmikko)说:"我们生活在一个传感器的世界里。传感器无处不在。它们当然出现在我们的汽车里,出现在许多工作场所,而且越来越多地进入我们的家庭。对这些传感器来说,最苛刻的环境永远是人体内部。"因此,研究人员认为该系统有助于为下一代植入式和可穿戴式生物医学传感器奠定基础。医学界越来越需要高效、不显眼、不易察觉的微型设备,这些设备还能作为大型组合的一部分运行,以绘制整个相关区域的生理活动图。"李说:"在实际开发这种基于尖峰的无线微传感器方面,这是一个里程碑。如果我们继续使用传统方法,就无法收集到这些应用在这类下一代系统中需要的高信道数据。"传感器所识别和传输的事件可以是特定的事件,如监测环境的变化,包括温度波动或某些物质的存在。传感器之所以能够使用如此少的能源,是因为外部收发器在传感器传输数据时为其提供无线供电,这意味着传感器只需在收发器发出的能量波范围内就能获得充电。这种无需插入电源或电池即可运行的能力使它们在许多不同的情况下都能方便、灵活地使用。研究小组在计算机上设计和模拟了复杂的电子器件,并通过多次制造迭代来制造传感器。这项工作建立在Nurmikko在布朗大学实验室先前研究的基础上,该研究推出了一种名为"神经粒"的新型神经接口系统。该系统使用一个由微型无线传感器组成的协调网络来记录和刺激大脑活动。"这些芯片是相当复杂的微型电子设备,我们花了一段时间才做到这一点,"隶属于布朗大学卡尼脑科学研究所的努尔米科说。"要定制操纵这些传感器电子特性的几种不同功能--它们基本上被挤压到硅片的几分之一毫米空间--所需的工作量和精力并不小。"研究人员展示了他们系统的效率,以及该系统的潜在扩展能力。他们使用实验室中的78个传感器对系统进行了测试,发现即使传感器在不同时间传输数据,也能准确无误地收集和发送数据。通过模拟,他们能够展示如何利用约8000个假定植入的传感器,解码从灵长类动物大脑中收集到的数据。研究人员表示,下一步工作包括优化系统以降低功耗,以及探索神经技术以外的更广泛应用。李说:"目前的工作提供了一种方法,我们可以在此基础上进一步发展。"编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1425147.htm手机版:https://m.cnbeta.com.tw/view/1425147.htm

相关推荐

封面图片

灿瑞科技:公司 2023 年智能传感器芯片占比有望超过电源管理芯片

灿瑞科技:公司2023年智能传感器芯片占比有望超过电源管理芯片灿瑞科技于最新的投资者关系活动会议纪要中表示,2023年智能传感器芯片占比有望超过电源管理芯片,这是公司产品线占比发生的比较重要的变化。导致该占比变化的原因,一方面由于经过多年培育,HIO电驱芯片持续放量,保持了良好的增长态势;磁传感器产品发展也相对稳健;而电源管理芯片在2023年受到下游消费电子市场低迷、竞争激烈的影响,占比下降到整体收入的一半以下。

封面图片

大阪大学研究人员开发出柔韧可弯曲的光学传感器 揉成一团也能用

大阪大学研究人员开发出柔韧可弯曲的光学传感器揉成一团也能用在最近发表于《先进材料》(AdvancedMaterials)上的一项研究中,大阪大学科学与工业研究所(SANKEN)的研究人员在一种超薄柔性薄片上开发出了一种光学传感器,这种传感器可以弯曲而不会断裂。事实上,这种传感器非常灵活,即使被揉成一团也能正常工作。在照相机中,光学传感器是感应穿过镜头的光线的装置,类似于人眼的视网膜。传感器设计的创新"传统的光学传感器是使用无机半导体和铁电材料制造的,"该研究的主要作者ReiKawabata说。"这使得传感器变得僵硬,无法弯曲。为了避免这个问题,我们研究了另一种探测光的方法。"与传统的光传感器不同,研究人员使用的是印在超薄聚合物基底(小于5微米)上的微小碳纳米管光电探测器阵列。当暴露在光线下时,碳纳米管会发热,形成热梯度,然后产生电压信号。在印刷过程中掺入化学载体可进一步提高纳米管的灵敏度。利用这些纳米管,可以测量可见光以及与热或分子有关的红外光。用于宽带红外热分析的集成有机电路的超灵活无线成像仪利用片状光学传感器对光、热和分子进行探测和成像。无线技术集成除了碳纳米管传感器,聚合物基板上还印有有机晶体管,将电压信号组织成图像信号。要读取这种信号,计算机不需要通过电线与传感器进行物理连接。取而代之的是一个无线蓝牙模块。该研究的资深作者荒木祯平说:"有了这套无线系统,我们的成像仪就能附着在柔软和弯曲的物体上,对其表面或内部进行分析,而不会损坏它们。"集成了碳纳米管光电探测器和有机晶体管的片式光学传感器研究人员制作了薄片型光学传感器的原型,并测试了其感应人体手指或电线等物体的热量以及流经管道的葡萄糖的能力。他们发现,这种光学传感器在很宽的波长范围内都具有很高的灵敏度。此外,在室温和大气条件下,测试表明它具有很高的弯曲耐久性,即使被揉皱也能正常工作。这种无线测量系统和薄片型光学传感器的独特优势将为执行许多任务(如无需采样即可评估液体质量)带来更简单的新方法。研究人员认为,它在无损成像、可穿戴设备和软机器人等许多应用领域都大有可为。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1419657.htm手机版:https://m.cnbeta.com.tw/view/1419657.htm

封面图片

"电子蜘蛛丝"传感器:利用环保技术实现生物电子学革命

"电子蜘蛛丝"传感器:利用环保技术实现生物电子学革命研究人员开发出了一种制造自适应生态友好型传感器的方法,这种传感器可以直接且不易察觉地印在各种生物表面上,无论是手指还是花瓣。资料来源:剑桥大学这种方法由剑桥大学的研究人员开发,其灵感来自蜘蛛丝,蜘蛛丝可以粘附在各种表面上。这些"蜘蛛丝"还结合了生物电子学,因此可以在"网"上添加不同的传感功能。先进的传感器技术这种纤维比人的头发至少小50倍,重量非常轻,研究人员直接将其打印在蒲公英蓬松的种子头上,而不会破坏其结构。印在人的皮肤上时,纤维传感器会紧贴皮肤并暴露出汗孔,因此佩戴者不会察觉到它们的存在。对印制在人体手指上的纤维进行的测试表明,它们可用作连续的健康监测器。这种低废物、低排放的生命结构增强方法可用于从医疗保健和虚拟现实到电子纺织品和环境监测等一系列领域。今天(5月24日),《自然电子学》杂志报道了这一研究成果。研究人员开发出了一种制造自适应生态友好型传感器的方法,这种传感器可以直接且不易察觉地印在各种生物表面上,无论是手指还是花瓣。这种比人类头发至少小50倍的纤维非常轻巧,研究人员可以直接将其打印到蒲公英蓬松的种子头上,而不会破坏其结构。资料来源:剑桥大学虽然人体皮肤非常敏感,但在皮肤上增加电子传感器可以从根本上改变我们与周围世界的互动方式。例如,直接印在皮肤上的传感器可用于持续健康监测、了解皮肤感觉,或在游戏或虚拟现实应用中改善"真实"感觉。可穿戴技术面临的挑战虽然嵌入传感器的可穿戴技术(如智能手表)已广泛普及,但这些设备可能会让人感到不舒服和碍眼。它们还会抑制皮肤的内在感觉。"如果你想准确地感知皮肤或树叶等生物表面上的任何东西,那么设备与表面之间的接口就至关重要,"领导这项研究的剑桥大学工程系教授黄艳艳(YanYanSheryHuang)说。"我们还希望生物电子器件对用户来说是完全不可感知的,这样它们就不会以任何方式干扰用户与世界的互动方式,而且我们希望它们是可持续的、低废料的。"研究人员开发出了一种制造自适应环保型传感器的方法,这种传感器可以直接且不易察觉地印在各种生物表面上,无论是手指还是花瓣。当印制在人体皮肤上时,纤维传感器会紧贴皮肤并暴露出汗孔,因此佩戴者不会察觉到它们的存在。对印制在人类手指上的纤维进行的测试表明,它们可用作连续健康监测器。资料来源:剑桥大学柔性电子产品的创新制造可穿戴传感器有多种方法,但这些方法都有缺点。例如,柔性电子元件通常印在塑料薄膜上,不允许气体或湿气通过,因此就像用保鲜膜包裹皮肤一样。其他研究人员最近开发出了可透气的柔性电子元件,就像人造皮肤一样,但这些元件仍然会干扰正常感觉,而且依赖于能源和废物密集型制造技术。三维打印是生物电子学的另一条潜在途径,因为它比其他生产方法浪费更少,但会产生较厚的装置,从而干扰正常行为。旋转电子纤维可制造出用户无法察觉的装置,但灵敏度和复杂程度不高,而且很难转移到相关物体上。现在,这个由剑桥大学领导的团队开发出了一种制造高性能生物电子器件的新方法,通过直接在各种生物表面(从指尖到蒲公英蓬松的种子头)上打印,这些电子器件可以定制。他们的技术灵感部分来源于蜘蛛,它们用最少的材料创造出适应环境的复杂而坚固的网状结构。研究人员用PEDOT:PSS(一种生物相容性导电聚合物)、透明质酸和聚氧化乙烯纺出了生物电子"蜘蛛丝"。这种高性能纤维是在室温下用水基溶液制成的,因此研究人员能够控制纤维的"可纺性"。随后,研究人员设计了一种轨道纺丝方法,使纤维能够变形为生物表面,甚至是指纹等微观结构。在人类手指和蒲公英种子头等表面对生物电子纤维进行的测试表明,这些纤维具有高质量的传感器性能,同时还不会被宿主察觉。论文第一作者AndyWang说:"我们的纺丝方法可以让生物电子纤维在微观和宏观尺度上遵循不同形状的解剖结构,而无需任何图像识别。这为如何制造可持续电子器件和传感器开辟了一个完全不同的角度。这是一种更容易制造大面积传感器的方法。"未来方向和商业化大多数高分辨率传感器都是在工业洁净室中制造的,需要在多步骤、高能耗的制造过程中使用有毒化学品。而剑桥大学开发的传感器可以在任何地方制造,所耗费的能源仅为普通传感器的一小部分。生物电子纤维可以修复,在使用寿命结束后只需简单清洗即可,产生的废料不到一毫克:相比之下,一般一次洗衣产生的纤维废料在600至1500毫克之间。"利用我们简单的制造技术,我们几乎可以把传感器放在任何地方,并在需要的时候随时随地对它们进行维修,而不需要大型印刷机或集中的制造设施,"Huang说。"这些传感器可以在需要的地方按需制造,并且产生的废物和排放物极少。"研究人员表示,他们的设备可应用于健康监测、虚拟现实、精准农业和环境监测等领域。未来,还可以将其他功能材料融入到这种纤维打印方法中,建立集成纤维传感器,以增强生命系统的显示、计算和能量转换功能。在剑桥大学商业化部门"剑桥企业"的支持下,这项研究正在实现商业化。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1432214.htm手机版:https://m.cnbeta.com.tw/view/1432214.htm

封面图片

AirPods 成为可穿戴脑机接口,从预防老年痴呆到成为 VR 传感器

AirPods成为可穿戴脑机接口,从预防老年痴呆到成为VR传感器加州大学圣地亚哥分校研究了一种可用于AirPods的外层柔性传感器,由于耳道靠近中枢神经系统,该传感器可以同时监测脑电波和乳酸浓度。脑状态和代谢物的监测是对早期疾病检测、健康监测、VR/AR应用产生重大影响的两个维度。耳朵靠近中枢神经系统、主要脉管系统和听觉皮层。该传感器除了可获取脑电图、眼电图、皮肤电活动、脉率和血氧饱和度等多个生理参数,还可以从多个外分泌汗腺分析重要代谢物。数据通过耳机无线传输,实时分析佩戴者的认知变化、压力、情绪,神经退行性疾病(如癫痫、阿尔茨海默症、帕金森)。加上传感器的电化学乳酸监测,还可区分全身性癫痫发作与心因性非癫痫和晕厥事件。https://www.nature.com/articles/s41551-023-01095-1投稿:@ZaiHuaBot频道:@TestFlightCN

封面图片

耳塞内置传感器可通过分析脑电波和汗液了解机主健康状况

耳塞内置传感器可通过分析脑电波和汗液了解机主健康状况当设备插入耳朵时,集成电生理传感器会与耳道皮肤接触,从而检测到邻近大脑颞叶的电活动。与此同时,电化学电极还能测量聚集在外耳外耳道部位的汗液中的乳酸盐含量。这些电极表面覆盖着一层亲水性水凝胶,这意味着它能吸水。所有传感器不仅具有柔韧性,而且还具有弹性和缓冲性。这些特性有助于它们舒适地贴合每位患者耳朵的独特轮廓,并在患者进行各种体力活动时与皮肤保持接触。当患者进行这些活动时,传感器会将读数传送到耳塞,耳塞再将数据无线传输到智能手机或笔记本电脑上进行处理。通过结合脑部活动和乳酸数据,医生可以诊断不同类型的癫痫发作、监测运动时所付出的努力或监测压力水平......以及该技术的其他可能应用。传感器适合每个病人的耳朵在迄今为止进行的测试中,使用传感器获得的数据与通过市售脑电图(EEG)耳机和含乳酸盐血液样本获得的数据相吻合。加州大学圣地亚哥分校的帕特里克-梅西埃(PatrickMercier)教授说:"这项研究迈出了重要的第一步,表明只需增强人们日常使用的耳塞的功能,就能从人体测量出有影响力的数据。由于使用这项技术不存在重大摩擦,我们预计最终会得到广泛采用。"...PC版:https://www.cnbeta.com.tw/articles/soft/1387011.htm手机版:https://m.cnbeta.com.tw/view/1387011.htm

封面图片

传感器实时检测食物变质并可将信息发送到手机上

传感器实时检测食物变质并可将信息发送到手机上每年,全球生产的所有食品中大约有三分之一被丢失或浪费。这大约是14亿吨(13亿吨)的食物。这不仅使全球经济在金钱上付出代价,而且高达10%的温室气体来自于生产出来但没有被吃掉的食物。再有就是吃了变质的食物,有可能会出现食物中毒。当肉类、鸡肉和鱼类等富含蛋白质的食物开始变质时,它们会产生生物胺,这些有机化合物是食品质量的指标,对人类有潜在的毒性。虽然生物胺是监测食品变质的黄金标准方法,但它们需要用昂贵的、非便携式的仪器进行测量,而且必须由受过培训的人员操作。现在,土耳其Koç大学的研究人员已经开发出一种微小的传感器,可以实时、无线、无需电池地监测食品新鲜度,并将结果发送到智能手机上。该传感器是由一种易于合成的聚合物叠加在电极上制成的,它使用电容传感技术来检测富含蛋白质的食物所产生的生物胺。它重约2克,尺寸为0.3英寸(2平方厘米)。该传感器采用了近场通信(NFC)技术,其芯片与智能手机相联,通过天线实时无线传输测量值。当兼容NFC的智能手机放在传感器附近时,芯片就会接收到足够的能源。研究人员在包装好的鸡胸肉和肋排中测试了他们的传感器,以展示该设备在现实世界中的应用。肉类样品被储存在不同的条件下:冷冻室、冰箱和室温下。三天后,监测室温样品的传感器的电容上升,表明生物胺正在从肉中释放出来,因为它已经变质。研究人员说,这表明该传感器有效地检测到了腐败现象。传感器对不同储存条件下的鸡肉(a)和牛肉(b)样品进行了三天的定期监测。"我们使用在不同存储条件下存储的鸡肉和牛肉样品测试了该传感器,以证明该传感器在现实生活中的应用,"研究人员说。"该传感器呈现出可靠的性能,例如,在三天的测量过程中,通过使用手机的即时传感器读数来预测食品的变质情况。在第三天,与储存在冰柜中的样品相比,室温储存的样品显示出700%的传感器响应变化,这证明了传感器在检测变质方面的操作。"研究人员说,他们的传感器易于使用,制作成本低廉,并能对超市货架上或家中的富含蛋白质的食品进行连续监测。这种设备可以被肉类生产商、供应商、当局和最终客户用来对富含蛋白质的食品进行实时新鲜度/变质监测。此外,研究人员还展示了一种低成本材料的批量制造兼容工艺,这可以产生便携式的、易于操作的设备,在食品安全和食物浪费令人担忧的地方可以引起人们的特别兴趣。该研究发表在《自然-食品》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1365029.htm手机版:https://m.cnbeta.com.tw/view/1365029.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人