太阳光制甲醇:利用铜和氮化碳实现革命性的二氧化碳转化

太阳光制甲醇:利用铜和氮化碳实现革命性的二氧化碳转化研究人员开发出一种利用铜和纳米氮化碳晶将二氧化碳高效转化为甲醇的阳光动力工艺,标志着向可持续燃料生产和减少二氧化碳迈出了重要一步。上图为测试催化剂将二氧化碳转化为甲醇的反应器。资料来源:诺丁汉大学效率和选择性的挑战在光催化过程中,光线照射到半导体材料上会激发电子,使电子穿过材料与二氧化碳和水发生反应,从而产生各种有用的产品,包括作为绿色燃料的甲醇。尽管最近取得了一些进展,但这一过程仍存在效率和选择性不足的问题。二氧化碳是导致全球变暖的最大因素。虽然可以将二氧化碳转化为有用的产品,但传统的热法依赖于化石燃料中的氢气。利用可持续的太阳能和无处不在的丰富水资源,开发基于光催化和电催化的替代方法非常重要。改进催化的纳米级控制诺丁汉大学化学学院研究员马达萨米-坦加穆图(MadasamyThangamuthu)博士是研究小组的共同负责人:"光催化使用的材料种类繁多。光催化剂吸收光并高效分离电荷载流子非常重要。在我们的方法中,我们在纳米尺度上控制材料。我们开发了一种新形式的氮化碳,它具有结晶纳米级畴,能够与光进行高效互动,并实现充分的电荷分离。光将二氧化碳转化为甲醇(燃料)的过程。资料来源:诺丁汉大学研究人员设计了一种将氮化碳加热到所需结晶度的工艺,最大限度地提高了这种材料在光催化方面的功能特性。利用磁控溅射技术,他们在无溶剂过程中沉积了原子铜,使半导体和金属原子得以亲密接触。令人惊喜的效率提升在诺丁汉大学化学学院开展实验工作的博士生塔拉-勒梅尔(TaraLeMercier)说:"我们测量了光产生的电流,并以此作为判断催化剂质量的标准。即使不加铜,新型氮化碳的活性也比传统氮化碳高44倍。然而,出乎我们意料的是,每1克氮化碳中只需添加1毫克铜,效率就提高了四倍。最重要的是,选择性从甲烷(另一种温室气体)变成了甲醇(一种宝贵的绿色燃料)"。诺丁汉大学化学学院的AndreiKhlobystov教授说:"二氧化碳价值化是英国实现净零排放目标的关键。确保我们用于这一重要反应的催化剂材料的可持续性至关重要。这种新型催化剂的一大优势在于它由可持续元素组成--碳、氮和铜--这些元素在我们的星球上都非常丰富。"本发明是深入了解二氧化碳转化过程中光催化材料的重要一步。它开辟了一条创造高选择性和可调整催化剂的途径,通过在纳米尺度上控制催化剂,可以调高所需的产物。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1425280.htm手机版:https://m.cnbeta.com.tw/view/1425280.htm

相关推荐

封面图片

巴斯夫宣布联手远景能源:深挖绿氢和二氧化碳制电子甲醇潜力

巴斯夫宣布联手远景能源:深挖绿氢和二氧化碳制电子甲醇潜力近日,巴斯夫与远景能源宣布合作,加快将绿氢和二氧化碳转化为电子甲醇。电子甲醇作为替代化石燃料的可持续能源载体,在各行业具有巨大潜力。此次合作中,巴斯夫旗下的巴斯夫工艺催化剂(BASFProcessCatalysts)将提供SYNSPIRETM催化剂技术,与远景能源创新的能源管理系统相结合。同时,远景能源将提供电子甲醇装置的工艺设计,最大限度提高催化剂技术的效率,并将利用智能物联操作系统EnOS优化化工装置的动态运行,充分实现从绿氢和二氧化碳到电子甲醇的动态转化。据巴斯夫介绍,巴斯夫开发的新型催化剂是可持续能源解决方案的重大突破。该催化剂利用绿氢和二氧化碳高效生产电子甲醇。

封面图片

新型催化剂可将二氧化碳高效转化为甲烷 转化率高达99.3%

新型催化剂可将二氧化碳高效转化为甲烷转化率高达99.3%DGIST的一个研究小组开发出一种先进的光催化剂,它能有效地将二氧化碳转化为甲烷,有可能为应对全球变暖提供一种可持续的解决方案。来自DGIST能源科学与工程系的InSoo-il教授及其团队成功开发出一种高效光催化剂。这项创新能够将导致气候变化的重要因素二氧化碳(CO2)转化为甲烷(CH4),也就是通常所说的天然气。全球变暖导致世界各地气候异常,威胁着人类的生存。减少温室气体是解决日益令人担忧的全球变暖问题的关键,这需要将大气中的二氧化碳转化为其他物质。光催化技术是一种环保解决方案,它只需利用太阳能和水就能将二氧化碳转化为有用的物质,如天然气。生产出的天然气可在日常生活中用作供暖、制冷系统和车辆的燃料。光催化材料的改进研究小组将吸收可见光和红外线的硒化镉与二氧化钛(一种金属氧化物和著名的光催化材料)结合起来,高效地将二氧化碳转化为天然气。以前,人们曾将具有周期性晶格结构的结晶二氧化钛作为光催化材料进行分析。然而,由于颗粒的规则排列,钛的三价阳离子(Ti3+)的活性位点的形成受到了限制。为了克服这个问题,In教授的团队使用无定形二氧化钛改进了催化反应,因为无定形二氧化钛可以通过缺乏晶格结构周期性的不规则颗粒排列形成更多的Ti3+活性位点。除了催化作用得到改善外,电荷转移过程也很稳定,可确保有足够的电子参与反应。这有助于将二氧化碳转化为碳化合物,特别是甲烷燃料。此外,与需要高温再生的传统光催化剂不同,无定形催化剂在不加热的情况下向反应器供氧,可在一分钟内再生。高效率和未来研究方向研究小组新开发的无定形二氧化钛-硒化镉光催化剂(TiO2-CdSe)在光反应18小时后的前6小时内甲烷转化率仍高达99.3%,是具有相同成分的晶体光催化剂(C-TiO2-CdSe)的4.22倍。"这项研究的重要意义在于,我们开发出了一种具有再生活性位点的催化剂,并通过计算化学研究确定了利用非晶态催化剂将二氧化碳转化为甲烷的机理,"DGISTIn教授说。"我们将开展后续研究,以改善无定形光催化剂的能量损失,并提高其长期稳定性,从而实现该技术的未来商业化。"编译来源:ScitechDailyDOI:10.1016/j.apcatb.2024.124006...PC版:https://www.cnbeta.com.tw/articles/soft/1434187.htm手机版:https://m.cnbeta.com.tw/view/1434187.htm

封面图片

新型光催化系统可将二氧化碳转化为有价值的燃料

新型光催化系统可将二氧化碳转化为有价值的燃料光合作用是植物和某些生物的叶绿体利用阳光、水和二氧化碳产生食物或能量的机制。过去几十年来,许多研究人员都在努力创造合成光合作用过程,目的是将二氧化碳转化为碳中性燃料。联合研究的负责人之一、城大化学系副教授叶如泉教授解释说:"然而,二氧化碳很难在水中转化,因为许多光敏剂或催化剂会在水中降解。虽然人工光催化循环已被证明能以更高的内在效率运行,但其在水中还原二氧化碳的低选择性和低稳定性阻碍了它们的实际应用。"分层自组装光催化系统(左)模仿了一种名为"Rhodobactersphaeroides"的紫色细菌(右)的自然光合作用装置,在将二氧化碳转化为甲烷时实现了15%的太阳能转化为燃料的效率。资料来源:(左)叶如泉教授研究小组/香港城市大学;(右)《生物物理学报》,99:67-75,2010年在最新的研究中,来自城大、香港大学、江苏大学和中国科学院上海有机化学研究所的联合研究小组克服了这些困难,利用超分子组装方法创建了一个人工光合作用系统。它模仿了紫色细菌的光收集色素细胞(即含有色素的细胞)的结构,这种细胞能非常有效地从太阳光中传递能量。这种新型人工光合作用系统的核心是一种高度稳定的人工纳米胶束--一种能在水中自组装的聚合物,具有亲水端和惧水端。这种纳米胶束的亲水性头部可作为光敏剂吸收阳光,而疏水性尾部则可作为自组装的诱导剂。将纳米簇放入水中,由于水分子与簇尾之间的分子间氢键作用,纳米簇就会自组装。加入钴催化剂后,光催化制氢和还原二氧化碳,从而产生氢气和甲烷。香港城市大学化学系副教授叶如泉教授(前排中)及其研究团队。图片来源:香港城市大学研究小组利用先进的成像技术和超快光谱技术,揭示了创新光敏剂的原子特征。他们发现,纳米小分子亲水性头部的特殊结构,以及水分子与纳米小分子尾部之间的氢键作用,使其成为一种稳定的、与水相容的人工光敏剂,解决了人工光合作用传统的不稳定性和与水不相容的问题。光敏剂与钴催化剂之间的静电作用以及纳米簇的强光采集天线效应改善了光催化过程。在实验中,研究小组发现甲烷的生产率超过13000μmolh-1g-1,24小时的量子产率为5.6%。它还实现了15%的高效太阳能转化为燃料的效率,超过了自然光合作用。最重要的是,这种新型人工光催化系统不依赖昂贵的贵金属,具有经济可行性和可持续性。叶教授说:"该系统的分层自组装提供了一种很有前景的自下而上的策略,即基于廉价、地球上丰富的元素,如锌和钴卟啉复合物,来创建一种精确控制的高性能人工光催化系统。"氢键增强纳米胶束的形成及其在太阳能下制氢和还原二氧化碳的过程。资料来源:叶如泉教授研究小组/香港城市大学叶如泉教授说,他相信这项最新发现将有利于并启发未来利用太阳能转化和还原二氧化碳的光催化系统的合理设计,为实现碳中和的目标作出贡献。...PC版:https://www.cnbeta.com.tw/articles/soft/1375391.htm手机版:https://m.cnbeta.com.tw/view/1375391.htm

封面图片

碳的炼金术:麻省理工学院设计出革命性的二氧化碳转化技术

碳的炼金术:麻省理工学院设计出革命性的二氧化碳转化技术如果将这一工艺扩大到工业用途,将有助于从发电厂和其他来源清除二氧化碳,从而减少排放到大气中的温室气体数量。麻省理工学院的化学工程师们证明,通过使用DNA将催化剂(蓝色圆圈)拴在电极上,可以使二氧化碳转化为一氧化碳的效率大大提高。图片来源:麻省理工学院ChristineDaniloff革命性的脱碳技术"这将能够从排放物或溶解在海洋中的二氧化碳中提取二氧化碳,并将其转化为有利可图的化学品。"保罗-库克(PaulM.Cook)化学工程职业发展助理教授、该研究的资深作者阿里尔-弗斯特(ArielFurst)说:"这确实是一条脱碳之路,因为我们可以把二氧化碳这种温室气体转化为对化学生产有用的东西。"这种新方法利用电力进行化学转换,催化剂通过DNA链系在电极表面。DNA就像尼龙搭扣一样,将所有反应成分紧紧粘在一起,使反应比所有成分都漂浮在溶液中更有效率。Furst创办了一家名为HelixCarbon的公司,以进一步开发这项技术。麻省理工学院前博士后GangFan是这篇论文的第一作者,论文发表在《美国化学学会学报》(JournaloftheAmericanChemicalSocietyAu)上。其他作者包括:21岁的NathanCorbin博士、23岁的MinjuChung博士、麻省理工学院前博士后ThomasGill和AmrutaKarbelkar以及23岁的EvanMoore。分解二氧化碳要将二氧化碳转化为有用的产品,首先需要将其转化为一氧化碳。其中一种方法是用电,但这种电催化所需的能量过于昂贵。为了降低成本,研究人员尝试使用电催化剂,这种催化剂可以加快反应速度,减少系统所需的能量。用于该反应的一种催化剂是一类被称为卟啉的分子,这种分子含有铁或钴等金属,结构类似于血液中携带氧气的血红素分子。在这种电化学反应中,二氧化碳溶解在电化学装置内的水中,该装置包含一个驱动反应的电极。催化剂也悬浮在溶液中。然而,这种装置的效率并不高,因为二氧化碳和催化剂需要在电极表面相遇,而这种情况并不常见。为了使反应更频繁地发生,从而提高电化学转换的效率,Furst开始研究如何将催化剂附着在电极表面。DNA似乎是这种应用的理想选择。她说:"DNA的成本相对较低,你可以用化学方法对其进行修饰,并且可以通过改变序列来控制两条链之间的相互作用。它就像一种序列特异的魔术贴,具有非常强但可逆的相互作用,你可以对其进行控制。"为了将单股DNA连接到碳电极上,研究人员使用了两个"化学手柄",一个在DNA上,另一个在电极上。这些"化学手柄"可以折叠在一起,形成永久性的结合。然后将互补的DNA序列连接到卟啉催化剂上,这样当催化剂加入溶液中时,它就会可逆地与已经连接到电极上的DNA结合--就像魔术贴一样。系统建立后,研究人员向电极施加电势(或偏压),催化剂利用这种能量将溶液中的二氧化碳转化为一氧化碳。反应还能从水中产生少量氢气。催化剂磨损后,可以通过加热系统来破坏两条DNA链之间的可逆键,从而将其从表面释放出来,并用新的催化剂取而代之。突破性的电化学转换利用这种方法,研究人员能够将反应的法拉第效率提高到100%,这意味着进入系统的所有电能都直接进入化学反应,没有能量浪费。而当催化剂没有被DNA拴住时,法拉第效率只有40%左右。Furst说,这项技术可以很容易地扩大到工业用途,因为研究人员使用的碳电极比传统金属电极便宜得多。催化剂也很便宜,因为它们不含任何贵金属,而且电极表面只需要少量的催化剂。通过更换不同的催化剂,研究人员计划尝试用这种方法制造甲醇和乙醇等其他产品。由Furst创办的HelixCarbon公司也在致力于进一步开发该技术,以实现潜在的商业用途。...PC版:https://www.cnbeta.com.tw/articles/soft/1425921.htm手机版:https://m.cnbeta.com.tw/view/1425921.htm

封面图片

环保新突破:单原子催化剂将二氧化碳转化为乙醇

环保新突破:单原子催化剂将二氧化碳转化为乙醇串联单原子电催化剂实现二氧化碳还原成乙醇。资料来源:DICP二氧化碳还原的挑战Cn(n≥2)液体产品因其高能量密度和易于储存而备受青睐。然而,由于对机理的理解有限,C-C偶联途径的操作仍是一项挑战。最近,由张涛教授和黄延强教授领导的研究小组在美国加利福尼亚大学洛杉矶分校进行了一项突破性研究。中国科学院大连化学物理研究所的张涛和黄延强教授领导的研究小组开发了一种锡基串联电催化剂(SnS2@Sn1-O3G),在-0.9VRHE和17.8mA/cm2的几何电流密度条件下,该催化剂可重复生成乙醇,法拉第效率高达82.5%。这项研究最近发表在科学杂志《自然-能源》上。研究人员通过在三维碳泡沫上进行SnBr2和硫脲的溶热反应,制造出SnS2@Sn1-O3G。这种电催化剂由SnS2纳米片和原子分散的Sn原子(Sn1-O3G)组成。机理研究表明,这种Sn1-O3G可分别吸附*CHO和*CO(OH)中间体,从而通过一种前所未有的甲酰基-碳酸氢盐偶联途径促进C-C键的形成。此外,通过使用同位素标记的反应物,研究人员追踪了在Sn1-O3G催化剂上形成的最终C2产物中C原子的形成路径。分析表明,产物中的甲基C来自甲酸,而亚甲基C来自二氧化碳。黄教授说:"我们的研究为乙醇合成中C-C键的形成提供了一个替代平台,并为操纵二氧化碳还原途径以获得所需的产品提供了一种策略。"...PC版:https://www.cnbeta.com.tw/articles/soft/1398721.htm手机版:https://m.cnbeta.com.tw/view/1398721.htm

封面图片

中国将首次开启海上二氧化碳封存

中国将首次开启海上二氧化碳封存中海油表示,这口井将建立起二氧化碳回注地层的“绿色通道”,预计每年可封存二氧化碳30万吨,累计封存二氧化碳150万吨以上,相当于植树近1400万棵,或停开近100万辆轿车。中国海油深圳分公司副总经理兼总工程师郭永宾表示,这口海上二氧化碳封存回注井完全由中国自主设计实施,标志着中国初步形成海上二氧化碳注入、封存和监测的全套钻完井技术和装备体系,填补了海上二氧化碳封存技术的空白。恩平15-1油田位于深圳西南约200公里的南海东部海域,平均水深约90米,是中国南海首个高含二氧化碳油田。经过一系列关键技术研究,中海油最终确定将二氧化碳封存在距离恩平15-1平台约3公里处的“穹顶”式地质构造中。该种地质构造类似一个倒扣在地底下的“巨碗”,具有自然封闭性,能够长期稳定地罩住二氧化碳。据悉,二氧化碳捕集、利用与封存技术(CCUS),是世界公认的具有巨大商业化应用潜力的碳减排技术之一。而在此之前,中国二氧化碳封存项目多为陆地封存。...PC版:https://www.cnbeta.com.tw/articles/soft/1350349.htm手机版:https://m.cnbeta.com.tw/view/1350349.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人