新的3D宇宙地图可能颠覆我们对宇宙的认知

新的3D宇宙地图可能颠覆我们对宇宙的认知在过去的几年里,暗能量光谱仪(DESI)--一种对遥远星系进行光谱天文测量的科研仪器--已经多次测绘了天空三分之一区域内的3500万个星系和240万个类星体的距离。负责管理该项目的劳伦斯伯克利国家实验室(伯克利实验室)的研究人员解释说,在理想条件下,DESI每20分钟就会循环浏览一组新的5000个星系,即每晚浏览10万多个星系。5000个机器人定位器将DESI的光纤眼睛对准预先选定的星系,测量它们的光谱,从中可以测算出宇宙在这些星系的光线到达地球时膨胀了多少。最终结果呢?嗯,我们还没到那一步,但伯克利实验室的研究人员已经取得了一个重要的里程碑:绘制了有史以来最大的宇宙三维地图,也是最精确的地图,精度优于1%。更具体地说,DESI对宇宙110亿年膨胀历史的总体精度为0.5%,而涵盖80-110亿年的最遥远纪元的精度达到了创纪录的0.82%。由于这些遥远的太空天体发出的光现在才到达DESI,科学家们可以绘制出宇宙年轻时的样子,从而揭开物理学中最大的谜团之一:暗能量--导致宇宙膨胀得越来越快的未知成分。科学家们说,这张地图证实了宇宙膨胀的速度正在加快--同时也提出了一种可能性,即暗能量并不像之前所说的那样在整个时间内都是恒定的。这项工作的共同作者、朴茨茅斯大学宇宙学与引力研究所高级研究员塞沙德里-纳达图尔(SeshadriNadathur)博士告诉《卫报》说:"我们看到的是一些暗示,它实际上一直在随着时间的推移而变化,这相当令人兴奋,因为它并不是宇宙学恒定暗能量标准模型的样子。"这项研究的合著者之一、杜伦大学的卡洛斯-弗伦克教授告诉《卫报》,这可能意味着科学家们对宇宙的认识可能要从头开始。这包括"修改我们对基础物理学的理解、对大爆炸本身的理解以及对宇宙长期预测的理解"。研究人员在多篇论文中分享了他们对第一年收集的数据进行的分析,并在美国物理学会会议和意大利RencontresdeMoriond会议上发表了演讲。伯克利实验室科学家兼该实验的共同发起人NathaliePalanque-Delabrouille说,通过一年的数据,研究人员已经可以测量出宇宙膨胀历史中七个不同的宇宙时间片段,每个片段的精度为1%到3%。这就是研究人员在研究DESI地图时看到的景象:星系簇拥在一起,被天体较少的空洞隔开。他们解释说,这与早期的宇宙形成了鲜明的对比,早期的宇宙是一锅由亚原子粒子组成的又热又浓的汤,亚原子粒子的运动速度太快,无法形成稳定的物质。这些粒子包括氢核和氦核,统称为重子。这种早期电离等离子体中的微小波动引起了压力波,使重子移动成波纹状。随着宇宙的膨胀和冷却,中性原子形成,压力波停止了,将波纹凝固在三维空间中,并使未来的星系越来越多地聚集在高密度区域。数十亿年后,我们仍然可以在星系分离的特征中看到这种微弱的三维涟漪或气泡图案--这种特征被称为重子声学振荡(BAOs)。通过测量这些气泡的表面大小,研究人员可以确定天空中这种极其微弱的图案是由什么物质造成的。绘制BAO气泡的远近图可以让研究人员将数据切成小块,测量宇宙在过去每个时间段的膨胀速度,并模拟暗能量对膨胀的影响。...PC版:https://www.cnbeta.com.tw/articles/soft/1426408.htm手机版:https://m.cnbeta.com.tw/view/1426408.htm

相关推荐

封面图片

用11吨重的“时光机”揭开暗能量和宇宙膨胀的神秘面纱

用11吨重的“时光机”揭开暗能量和宇宙膨胀的神秘面纱DESI绘制了迄今为止最大的宇宙三维地图。地球位于这张完整地图的薄片中心。在放大的部分,很容易看到我们宇宙中物质的底层结构。图片来源:ClaireLamman/DESI合作;cmastro定制的彩色地图软件包我们现在拥有了有史以来最大的宇宙三维地图,这要归功于安装在亚利桑那州一架望远镜顶端的一台功能强大的仪器,它拥有一个由5000只光纤"眼睛"组成的机器人阵列,可以观察夜空。在过去的五年里,暗能量光谱仪--在科学界被称为DESI--测量了3000多万个星系和300万颗类星体的光谱,以确定宇宙在110亿年里的膨胀速度。DESI的宣布是一项正在进行的国际合作的成果,该合作由来自70多个机构的900多名研究人员组成,其中包括在该项目中发挥领导作用的加州大学圣克鲁兹分校的天文学家。然而,尽管这个消息很重大,但他们说这仅仅是个开始。暗能量光谱仪(DESI)安装在基特峰国家天文台的美国国家科学基金会尼古拉斯-U-梅耶尔4米望远镜上。资料来源:KPNO/NOIRLab/NSF/AURA/P.Marenfeld开拓性发现和未来愿景加州大学圣克鲁兹分校天文学和天体物理学系副教授阿列克西-莱奥豪德(AlexieLeauthaud)说:"如果第一年数据集中暗示的趋势在第三年的分析中得到证实,这将是一个重大发现。作为DESI合作的一部分,这将是一个非常激动人心的时刻。"从七月份开始,Leauthaud将担任这项工作的发言人--其中包括牵头组织者的职责--因此她完全有能力提供最新信息。加州大学圣克鲁斯分校的其他合作教授包括天文学与天体物理学教授康妮-罗科西(ConnieRockosi)和J.泽维尔-普罗查斯卡(J.XavierProchaska)。洛科西领导了基特峰国家天文台4米梅耶尔望远镜的仪器调试工作,她现在的角色是仪器科学家,帮助仪器保持最佳运行状态。此外,加州大学圣克鲁兹分校的本科生、研究生和博士后组成的"杰出团队"也功不可没,他们一直积极参与该项目,定期前往亚利桑那州的望远镜帮助观测。揭开暗能量的神秘面纱正如DESI所在的劳伦斯伯克利国家实验室在一份公告中解释的那样:"了解我们的宇宙是如何进化的,这与它的终结方式息息相关,也与物理学中最大的谜团之一有关:暗能量,一种导致我们的宇宙膨胀得越来越快的未知成分"。这是科学家们第一次以优于1%的精度测量年轻宇宙的膨胀历史--让我们对宇宙是如何演化的有了最好的认识。研究人员在多篇论文中分享了他们对第一年所收集数据的分析,这些论文将于今天发布在arXiv上,研究人员还在美国物理学会会议和意大利莫里昂德会议上发表了演讲。在这段360度视频中,您可以利用DESI的坐标数据,在数百万个星系中进行互动式飞行。资料来源:菲斯克天文馆、中大博尔德分校和DESI合作项目斯文-海登里奇(SvenHeydenreich)是加州大学圣克鲁兹分校的一名博士后研究学者,他在DESI身兼数职:担任早期职业科学家委员会委员,利用仪器进行星系间测量,并共同领导一个工作组,预测DESI任务可能延续的不同方案。"我们的目标是测量DESI星系如何弯曲和扭曲来自其背后更遥远星系的光线,这种效应被称为引力透镜效应,"海登里希说,他于2023年底在基特峰现场工作了一周。"这些测量结果对于分析星系如何受到其周围暗物质分布的影响至关重要。此外,这些结果还将有助于提高我们对描述我们当前宇宙组成和演化模型的参数的理解"。11吨重的"时光机"DESI的组件设计用于自动对准预先选定的一组星系,收集它们的光线,然后将这些光线分割成狭窄的色带,以精确绘制它们与地球的距离图,并测量这些光线到达地球时宇宙膨胀了多少。在理想条件下,DESI每20分钟就可以循环观测一组新的5000个星系。在过去的五年里,DESI反复测绘了天空三分之一区域内数以百万计的星系和类星体的距离,让我们对暗能量和宇宙的历史有了更多的了解。我们目前的理解是,引力减缓了早期宇宙的膨胀速度,但暗能量却加速了宇宙的膨胀。DESI对全部110亿年膨胀历史的总体精度为0.5%,最遥远的纪元--涵盖过去的80-110亿年--精度达到创纪录的0.82%。对我们年轻的宇宙进行这样的测量是非常困难的。然而,在一年之内,DESI测量早期宇宙膨胀历史的能力已经是其前身(斯隆数字巡天的BOSS/eBOSS)的两倍。通过观察DESI的地图,我们不难发现宇宙的基本结构:星系簇拥在一起,被天体较少的空洞隔开。在DESI的视野之外,我们的早期宇宙则完全不同:那是一锅由亚原子粒子组成的炙热而浓稠的汤,它们的运动速度太快,以至于无法形成像我们今天所知的原子那样的稳定物质。这些粒子中包括氢核和氦核,统称为重子。这种早期电离等离子体中的微小波动引起了压力波,使重子移动成波纹状,就像你把一把碎石扔进池塘里所看到的一样。随着宇宙的膨胀和冷却,中性原子形成了,压力波停止了,将涟漪凝固在三维空间中,并使未来的星系越来越多地聚集在高密度区域。数十亿年后,我们仍然可以在星系分离的特征中看到这种微弱的三维涟漪或气泡图案--这种特征被称为重子声振荡(BAOs)。这段动画展示了重子声波振荡如何充当测量宇宙膨胀的宇宙尺。资料来源:克莱尔-拉曼/DESI合作和珍妮-努斯/伯克利实验室研究人员利用BAO测量结果作为宇宙标尺。通过测量这些气泡的表观大小,他们可以确定天空中这种极其微弱图案的物质的距离。通过对BAO气泡远近的测绘,研究人员可以将数据切成小块,测量宇宙在过去每个时间段的膨胀速度,并模拟暗能量对膨胀的影响。俄亥俄大学教授、DESIBAO分析联合负责人徐熙钟(音译)说:"我们测量了这一巨大宇宙时间范围内的膨胀历史,其精确度超过了之前所有BAO勘测的总和。我们很高兴了解这些新的测量结果将如何改善和改变我们对宇宙的认识。人类对我们的宇宙有着永恒的迷恋,既想知道它是由什么构成的,又想知道它将会发生什么"。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1427264.htm手机版:https://m.cnbeta.com.tw/view/1427264.htm

封面图片

超越爱因斯坦突破性的宇宙地图重新定义了宇宙模型

超越爱因斯坦突破性的宇宙地图重新定义了宇宙模型德克萨斯大学达拉斯分校的一名天体物理学家等组成的研究小组,作为暗能量光谱仪(DESI)合作项目的一部分,正在领导一项旨在探索宇宙膨胀和加速的开创性实验。达拉斯UT大学自然科学与数学学院(NSM)物理学教授穆斯塔法-伊沙克-布沙基(MustaphaIshak-Boushaki)博士是DESI合作项目的成员,DESI合作项目是一个由来自全球70多个机构的900多名研究人员组成的国际小组,该小组参与了一项为期多年的实验,旨在加深对宇宙历史和命运的了解。4月4日,伊沙克-布沙基与其他两位DESI科学家在加利福尼亚州萨克拉门托举行的美国物理学会会议上,介绍了对DESI实验第一年所收集数据的分析。伊沙克-布沙基介绍了从DESI数据中推断出的宇宙学结果及其对宇宙的影响。研究人员还在预印本网站arXiv上发布的多篇论文中分享了第一年收集的数据结果。位于亚利桑那州基特峰国家天文台(KPNO)的DESI仪器从宇宙最遥远的地方收集光线,使科学家能够绘制出宇宙年轻时的样子,并追溯其演变到今天所观测到的情况。了解宇宙是如何演变的,关系到宇宙是如何终结的,也关系到物理学中最大的谜团之一:宇宙正在加速膨胀,这背后究竟隐藏着什么?对DESI第一年数据收集工作的分析证实了科学家们所认为的宇宙最佳模型的基本原理,但同时也暗示,关于宇宙加速的根本原因,还有更多的东西需要了解。DESI绘制了迄今为止最大的宇宙三维地图。地球位于这张完整地图的薄片中心。在放大的部分,很容易看到我们宇宙中物质的底层结构。图片来源:ClaireLamman/DESI合作;cmastro定制的彩色地图软件包宇宙加速度是个问题,因为它违背了在太阳系和附近太空中观察到的万有引力的工作原理,而万有引力会使有质量的物体聚集在一起。伊沙克-布沙基说:"引力把物质拉在一起,所以当我们把一个球抛向空中时,地球的引力会把它拉向地球。但在最大尺度上,宇宙的作用却不同。它的行为就像有一种排斥力在把宇宙推开,加速宇宙的膨胀。这是一个大谜团,我们正在多方面进行研究。它是宇宙中未知的暗能量,还是爱因斯坦引力理论在宇宙尺度上的修正?"许多科学家认为暗能量在宇宙加速中起着关键作用,但对它的理解并不透彻。一些理论认为,暗能量是一个宇宙学常数,是空间的固有属性,是加速的驱动力。为了研究暗能量在过去110亿年中的影响,DESI小组利用迄今为止最精确的测量方法绘制了有史以来最大的宇宙三维地图。这是科学家首次以优于1%的精度测量年轻宇宙的膨胀历史。宇宙的主要模型被称为Lambda-CDM。它既包括普通物质,也包括一种很少相互作用的物质,即冷暗物质(CDM)和暗能量,称为Lambda。物质和暗能量都影响着宇宙的膨胀方式,但两者的方式截然相反。通过引力吸引,物质和暗物质减缓了宇宙的膨胀,而暗能量则加速了宇宙的膨胀。每种物质的数量都会影响宇宙的演化过程。伊沙克-布沙基说,这个模型可以有效地验证以前的实验结果,并描述宇宙在整个时间段内的样子。这段动画展示了重子声波振荡如何充当测量宇宙膨胀的宇宙尺。资料来源:克莱尔-拉曼/DESI合作和珍妮-努斯/伯克利实验室然而,当DESI的第一年结果与其他研究的数据相结合时,就会发现与Lambda-CDM模型预测的结果有一些微妙的差别。Ishak-Boushaki说:"我们的研究结果表明,宇宙标准模型出现了一些有趣的偏差,这可能表明暗能量正在随着时间的推移而演变。我们收集的数据越多,就越有能力确定这一发现是否成立。有了更多的数据,我们可能会为我们观察到的结果找出不同的解释,或者证实它。如果它持续存在,这一结果将揭示导致宇宙加速的原因,并为了解我们宇宙的演变迈出一大步"。更多的数据还将改进DESI的其他早期成果,这些成果涉及哈勃常数(衡量当今宇宙膨胀速度的指标)和中微子粒子的质量。DESI是首个进行完全盲法分析的光谱实验,它对科学家隐瞒了真实结果,以避免潜意识中的确认偏差。研究人员"盲目"地使用修改过的数据,并编写计算机代码来分析他们的发现。一切完成后,他们将分析结果应用于原始数据,以揭示实际答案。"Ishak-Boushaki博士的研究以及他与大约70个机构的科学家的合作揭示了关于我们宇宙的重要见解,其结果令人着迷,"NSM院长兼FrancisS.andMaurineG.Johnson杰出大学讲座教授DavidHyndman博士说。"UT达拉斯分校拥有如此世界一流的研究项目,看到我们的科学家在基础性发现中发挥关键作用,真是令人振奋"。...PC版:https://www.cnbeta.com.tw/articles/soft/1434166.htm手机版:https://m.cnbeta.com.tw/view/1434166.htm

封面图片

新的暗物质地图证实了爱因斯坦的宇宙理论

新的暗物质地图证实了爱因斯坦的宇宙理论一个由160多名天文学家组成的国际团队利用阿塔卡马宇宙学望远镜(ACT),对占宇宙全部质量约85%的无形暗物质进行了新的揭示。这项具有里程碑意义的研究证实了爱因斯坦关于引力和宇宙学的理论,再次确认了物理学标准模型的有效性。在ACT天文台于2022年底退役之前,研究人员通过再次观察宇宙微波背景(CMB)收集了足够的数据用于研究。CMB是一种弥漫性辐射,充满了整个可观测的宇宙,传统上被认为是宇宙的第一个电磁哀号,起源于宇宙只有38万年的时候。天文学家追踪了宇宙中大型结构的引力--包括暗物质--是如何在到达地球的140亿年里扭曲CMB辐射的,就像放大镜弯曲通过镜头的光线一样。根据这些观测结果制作的新的详细地图显示,宇宙的"块状"和膨胀率与基于爱因斯坦引力理论的宇宙学标准模型一致。剑桥大学宇宙学教授BlakeSherwin说,新地图为正在进行的辩论提供了新的见解,有人称之为"宇宙学的危机"。这里的"危机"源于最近通过使用星系中恒星发出的背景光而不是仅仅使用CMB化石辐射进行的测量。这些结果似乎表明,暗物质不够"结实",无法将宇宙捆绑在一起,使得宇宙学的标准模型本质上是"破碎的",或者至少是不完整的。相反,用ACT观测站制作的新地图与源于标准模型的预测"很一致"。目前,不再需要编造新的物理定律来"修复"我们关于自然界如何运作的知识。普林斯顿大学物理学教授、ACT主任苏珊娜-斯塔格斯(SuzanneStaggs)说,"CMB透镜数据在追踪外面的东西的总和的能力方面,可以与更传统的对星系可见光的调查相媲美。综合来看,CMB透镜和最好的光学测量正在阐明"宇宙中所有质量的演变"。...PC版:https://www.cnbeta.com.tw/articles/soft/1354667.htm手机版:https://m.cnbeta.com.tw/view/1354667.htm

封面图片

碰撞的黑洞可能揭示了宇宙膨胀速度的秘密

碰撞的黑洞可能揭示了宇宙膨胀速度的秘密据BGR报道,宇宙一直在膨胀。科学家们几十年来一直相信这一点。然而,对科学家们来说,确定宇宙的膨胀速度一直是困难的。现在研究人员可能终于找到了一种方法来确定宇宙的膨胀速度以及它是如何演变的。当两个黑洞碰撞时,它们在时空中产生涟漪,科学家称之为引力波。现在,科学家们已经开发出一种新技术,可以用来测量这些信号的变化。科学家们相信,这可以帮助更好地了解宇宙的膨胀速度。科学家们在20世纪90年代末首次确定,宇宙正在以加速的速度膨胀。我们把这称为哈勃常数。而且,每当科学家们试图根据哈勃常数来计算宇宙的膨胀速度时,他们最终会得到多个数值。因此,许多人一直在寻找一种更精确的方法来测量宇宙膨胀速度。科学家们希望能更好地测量宇宙膨胀速度的一种方法是通过测量紧密的双黑洞之间的宇宙碰撞。据Space.com报道,他们把这些配对称为“光谱警报器”,它们最终可以给我们提供一种更稳定的方法来测量宇宙膨胀的速度。除了告诉我们宇宙是如何膨胀的,了解加速膨胀的速度还可以告诉我们更多关于早期宇宙的情况。詹姆斯·韦伯望远镜最近发现了已知的最早的星系,但是我们对这些星系最初是如何形成的仍然不甚了解。甚至是宇宙是如何从大爆炸中扩张的。人们希望通过测量黑洞碰撞产生的时空涟漪,为科学家们提供更多的数据来观察。而且,由于像詹姆斯·韦伯望远镜这样的设备已经变得如此复杂,我们可能有一天能够确定宇宙的膨胀速度,是什么在助长这种膨胀,甚至何时,如果有的话,它将放缓。PC版:https://www.cnbeta.com/articles/soft/1306615.htm手机版:https://m.cnbeta.com/view/1306615.htm

封面图片

"宇宙学耦合":新证据表明黑洞是暗能量的来源

"宇宙学耦合":新证据表明黑洞是暗能量的来源天体物理学家邓肯·法拉和凯文·克罗克领导了这项雄心勃勃的研究,将夏威夷在星系演化和引力理论方面的专业知识与九个国家的研究人员的观察和分析经验相结合,首次对真正的黑洞内部可能存在的东西提出了见解。"当LIGO在2015年底听到第一对黑洞合并时,一切都改变了,"克罗克说。"该信号与纸面上的预测非常吻合,但是将这些预测扩展到数百万年,或者数十亿年?将黑洞的那个模型与我们不断膨胀的宇宙相匹配?当时根本不清楚如何做到这一点。"该团队最近发表了两篇论文,一篇发表在《天体物理学杂志》上,另一篇发表在《天体物理学杂志通讯》上,研究了位于古老和休眠星系中心的超大质量黑洞。研究人员研究了像Messier59这样的椭圆星系,以确定其中心黑洞的质量是否在过去90亿年里发生了变化。光线的平滑分布是数十亿的恒星。资料来源:ESA/Hubble&NASA,P.Cote第一篇论文发现这些黑洞在数十亿年中获得了质量,其方式不容易被标准的星系和黑洞过程所解释,如合并或气体的吸积。第二篇论文发现这些黑洞的质量增长与黑洞的预测相吻合,这些黑洞还包围着真空能量--这是由于在不破坏爱因斯坦方程的情况下尽可能地挤压物质,从而避免了奇点的产生。在不存在奇点的情况下,该论文随后表明,在宇宙第一批恒星死亡时产生的黑洞的综合真空能量与我们宇宙中的暗能量的测量数量一致。"我们同时在说两件事:有证据表明,典型的黑洞解决方案在很长很长的时间尺度上对你不起作用,而且我们有第一个被提议的暗能量的天体物理来源,"两篇论文的主要作者法拉说。"不过,这意味着并不是说其他人没有提出暗能量的来源,但这是第一篇观测论文,我们没有给宇宙添加任何新的东西作为暗能量的来源:爱因斯坦引力理论中的黑洞就是暗能量。"这些新的测量结果,如果得到进一步证据的支持,将重新定义我们对黑洞是什么的理解。在第一项研究中,该团队确定了如何利用现有的黑洞测量来搜索宇宙学耦合。考德威尔53号(NGC3115)最引人注目的是在其中心可以发现的超大质量黑洞。资料来源:美国宇航局、欧空局和J-埃尔文(阿拉巴马大学)。黑洞也很难在很长的时间尺度上进行观测。观察可以在几秒钟内进行,或者最多几十年--没有足够的时间来检测黑洞在宇宙的整个生命周期中可能发生的变化。要看到黑洞在几十亿年的范围内如何变化是一项更大的任务。因为星系的寿命可能长达数十亿年,而且大多数星系都包含一个超大质量黑洞,研究小组意识到星系是关键,但选择正确的星系类型至关重要。研究报告的共同作者、西北研究协会的星系专家萨拉-佩蒂(SaraPetty)说:"在文献中测得的星系中的黑洞有许多不同的行为,而且实际上没有任何共识。我们决定,通过只关注被动进化的椭圆星系中的黑洞,我们可以帮助理清这件事。"椭圆星系是巨大的,而且形成得很早。它们是星系组装的化石。天文学家认为它们是星系碰撞的最终结果,体积巨大,有多达数万亿颗旧星。通过比较5个不同的古代椭圆星系的黑洞质量和今天椭圆星系中的黑洞来测量耦合强度k。测量结果聚集在k=3左右,意味着黑洞含有真空能量,而不是一个奇点。资料来源:法拉等人,2023年[《ApJ》杂志]通过只观察最近没有活动的椭圆星系,研究小组可以认为,这些星系的黑洞质量的任何变化都不可能轻易地由其他已知过程引起。利用这些种群,研究小组随后检查了它们中心黑洞的质量在过去90亿年中是如何变化的。如果黑洞的质量增长只通过吸积或合并发生,那么这些黑洞的质量预计根本不会有太大变化。然而,如果黑洞通过与膨胀的宇宙耦合而获得质量,那么这些被动演化的椭圆星系可能会显示出这种现象。研究人员发现,他们看的时间越靠前,黑洞的质量就越小,相对于它们今天的质量。这些变化是很大的。今天的黑洞比90亿年前的黑洞大7到20倍,大到研究人员怀疑宇宙学耦合可能是罪魁祸首。在第二项研究中,研究小组调查了在第一项研究中测得的黑洞增长是否可以单独用宇宙学耦合来解释。"你可以把一个耦合的黑洞想象成一个橡皮筋,随着宇宙的扩张而被拉长,随着它的拉伸,它的能量增加。爱因斯坦的E=mc2告诉你,质量和能量是成比例的,所以黑洞的质量也会增加。"质量增加的程度取决于耦合强度,研究人员称这个变量为K。橡皮筋越硬,就越难拉伸,所以拉伸时的能量就越大。简而言之,这就是k,"克罗克说。因为来自宇宙学耦合的黑洞的质量增长取决于宇宙的大小,而宇宙在过去比较小,所以第一项研究中的黑洞必须以正确的数量减少质量,以便宇宙学耦合的解释能够发挥作用。研究小组在三个不同的椭圆星系集合中检查了五个不同的黑洞群,这些黑洞取自宇宙大约是现在大小的二分之一和三分之一的时候。在每一次比较中,他们都测量到K值几乎为正3。2019年,这个数值被当时还是研究生的克罗克和马诺阿大学的数学教授乔尔-韦纳预测为含有真空能量的黑洞,而不是奇点。这个结论是深刻的,克罗克和韦纳已经证明,如果k是3,那么宇宙中的所有黑洞共同贡献了一个几乎恒定的暗能量密度,就像暗能量的测量结果表明的那样。黑洞来自死亡的大型恒星,所以如果知道正在制造多少大型恒星,就可以估计你正在制造多少黑洞,以及它们作为宇宙学耦合的结果增长多少。研究小组使用了詹姆斯-韦伯太空望远镜提供的关于最早的恒星形成速度的最新测量结果,发现这些数字是一致的。据研究人员称,他们的研究为理论物理学家和天文学家提供了一个框架,以进一步测试,并为当前的暗能量实验,如暗能量光谱仪和暗能量调查,提供了一个框架,以阐明这一想法。"如果得到证实,这将是一个了不起的结果,为下一代的黑洞解决方案指明了方向,"法拉说。...PC版:https://www.cnbeta.com.tw/articles/soft/1344675.htm手机版:https://m.cnbeta.com.tw/view/1344675.htm

封面图片

弥合宇宙鸿沟:对宇宙膨胀的先驱性测量改变了长期以来的争论

弥合宇宙鸿沟:对宇宙膨胀的先驱性测量改变了长期以来的争论这张图片显示了巨大的星系团MACSJ1149.5+223,它的光线花了50多亿年才到达我们这里。该星系团的巨大质量使来自更遥远的天体的光线发生弯曲。由于引力透镜的作用,来自这些天体的光线被放大和扭曲了。同样的效应正在形成同一遥远物体的多个图像。这项工作分为两篇论文,分别发表在世界顶级同行评议的学术期刊《科学》和天体物理学期刊《天体物理学报》上,后者是一份同行评议的天体物理学和天文学科学期刊。在天文学中,有两种对宇宙膨胀的精确测量,也被称为"哈勃常数"。一个是从附近的超新星观测中计算出来的,第二个是使用"宇宙微波背景",或在宇宙大爆炸后不久开始自由流动的辐射。然而,这两种测量方法相差约10%,这在物理学家和天文学家中引起了广泛的争论。如果这两个测量结果都是准确的,这意味着科学家目前关于宇宙构成的理论是不完整的。两篇论文的主要作者、明尼苏达大学物理和天文学学院助理教授帕特里克-凯利说:"如果新的、独立的测量结果证实了哈勃常数的两个测量结果之间的这种分歧,它将成为我们理解宇宙的一个缺口。最大的问题是一个或两个测量结果是否可能存在问题。我们的研究通过使用一种独立的、完全不同的方式来测量宇宙的膨胀率来解决这个问题。"明尼苏达大学领导的团队能够利用凯利在2014年发现的一颗超新星的数据来计算这个数值--这是有史以来第一个多重成像的超新星的例子,这意味着望远镜捕捉到了同一宇宙事件的四个不同图像。在发现之后,世界各地的团队预测,这颗超新星将在2015年重新出现在一个新的位置,明尼苏达大学的团队检测到了这个额外的图像。这些多重图像的出现是因为该超新星受到了一个星系团的引力凝聚,这是一种来自星系团的质量弯曲并放大光线的现象。通过利用2014年和2015年图像出现之间的时间延迟,研究人员能够利用挪威天文学家SjurRefsdal在1964年提出的一个理论来测量哈勃常数,这个理论在以前是不可能付诸实践的。凯利说,研究人员的发现并没有绝对解决争论,但他们确实为这个问题提供了更多的洞察力,并使物理学家更接近于获得宇宙年龄的最精确测量。测量结果与来自宇宙微波背景的数值有更好的一致性,尽管--鉴于不确定性--它并没有排除来自本地距离阶梯的测量,如果对未来同样被星系团引力凝聚的超新星的观测产生了类似的结果,那么它将确定目前的超新星数值的问题,或者我们对星系团暗物质的理解。利用同样的数据,研究人员发现,目前一些星系团暗物质的模型能够解释他们对超新星的观测。这使他们能够确定星系团中暗物质位置的最准确模型,这是一个长期困扰天文学家的问题。...PC版:https://www.cnbeta.com.tw/articles/soft/1359737.htm手机版:https://m.cnbeta.com.tw/view/1359737.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人