新材料可大幅提高太阳能电池板的效率

新材料可大幅提高太阳能电池板的效率美国利哈伊大学的一个研究小组创造了一种材料,它可以大大提高太阳能电池板的效率。使用这种材料作为太阳能电池活性层的原型显示出80%的平均光电吸收率、很高的光激发载流子生成率以及前所未有的高达190%的外部量子效率(EQE)--这远远超过了硅基材料的肖克利-奎塞尔理论效率极限,并将光伏量子材料领域推向了新的高度。ChindeuEkuma。资料来源:利哈伊大学物理学教授ChineduEkuma在《科学进展》(ScienceAdvances)杂志上发表了他与利哈伊大学博士生SrihariKastuar合作开发这种材料的论文。先进的材料特性这种材料的效率飞跃主要归功于其独特的"中间带态",即材料电子结构中的特定能级,使其成为太阳能转换的理想选择。这些态的能级在最佳子带间隙内,即材料能有效吸收阳光并产生电荷载流子的能量范围,约为0.78和1.26电子伏特。此外,这种材料在电磁波谱的红外线和可见光区域的高吸收率表现尤为出色。以CuxGeSe/SnS为活性层的薄膜太阳能电池示意图。资料来源:Ekuma实验室/利哈伊大学在传统太阳能电池中,最大EQE为100%,即每吸收一个太阳光光子,就能产生和收集一个电子。然而,过去几年中开发的一些先进材料和配置已证明能够从高能光子中产生和收集一个以上的电子,即EQE超过100%。斯里哈里-卡斯图阿尔,利哈伊大学。资料来源:利哈伊大学虽然这种多重激子生成(MEG)材料尚未广泛商业化,但它们有可能大大提高太阳能发电系统的效率。在Lehigh开发的材料中,中间带态能够捕获传统太阳能电池通过反射和产热等方式损失的光子能量。材料开发与潜力研究人员利用"范德华间隙"(层状二维材料之间的原子级微小间隙)开发出了这种新型材料。这些间隙可以限制分子或离子,材料科学家通常利用它们来插入或"插层"其他元素,以调整材料特性。为了开发新型材料,利哈伊大学的研究人员在硒化锗(GeSe)和硫化锡(SnS)制成的二维材料层之间插入了零价铜原子。Ekuma是计算凝聚态物理方面的专家,在对该系统进行了大量计算机建模并证明其理论前景后,他开发了这一原型作为概念验证。他说:"其快速反应和更高的效率有力地表明了铜掺杂GeSe/SnS作为一种量子材料在先进光伏应用中的使用潜力,为提高太阳能转换效率提供了一条途径。这是开发新一代高效太阳能电池的理想候选材料,将在满足全球能源需求方面发挥至关重要的作用。"虽然将新设计的量子材料整合到当前的太阳能系统中还需要进一步的研究和开发,但埃库马指出,用于制造这些材料的实验技术已经非常先进。随着时间的推移,科学家们已经掌握了将原子、离子和分子精确插入材料的方法。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1427195.htm手机版:https://m.cnbeta.com.tw/view/1427195.htm

相关推荐

封面图片

慕尼黑工业大学新发现可大幅提高有机太阳能电池的效率

慕尼黑工业大学新发现可大幅提高有机太阳能电池的效率太阳为地球提供了大量能量,但太阳能电池总会损失一部分能量。这是使用有机太阳能电池的一个障碍,尤其是对那些在创新应用中可行的太阳能电池而言。提高有机太阳能电池效率的一个关键因素是改善材料中积累的太阳能的传输。慕尼黑工业大学(TUM)的一个研究小组现已证明,某些有机染料可以帮助建立能量通过的"虚拟高速公路"。有机太阳能电池是一种轻型、极薄的能量收集器,作为一种柔性涂层,几乎适用于任何表面:基于有机半导体的太阳能电池开辟了一系列应用可能性,例如,可卷起的太阳能电池板和薄膜,或用于智能设备。但许多应用的一个缺点是,材料内部收集的能量传输相对较差。研究人员正在研究有机太阳能电池的基本传输过程,以找到改善这种传输的方法。德国慕尼黑工业大学光谱学理论方法教授弗兰克-奥特曼(FrankOrtmann)就是研究人员之一。他和他来自德累斯顿的同事们最关注的是光与材料之间的相互作用,尤其是所谓的激子的行为。FrankOrtmann教授(右)和MaximilianDorfner讨论特定分子如何提高有机太阳能电池的效率。图片来源:S.Reiffert/TUM"激子就像是太阳的燃料,必须以最佳方式加以利用,"身为"电子转换"卓越小组成员的奥特曼解释道。"当光子形式的光能与太阳能电池材料碰撞时,会被吸收并缓冲为激发态。这种中间状态被称为激子"。这些电荷在到达专门设计的界面之前不能用作电能。奥特曼和他的团队现在已经证明,可以使用有机染料创建所谓的激子传输高速公路。"让激子尽快到达这一界面之所以如此重要,是因为它们的寿命很短。"奥特曼说:"传输速度越快、针对性越强,能量产量就越高,太阳能电池的效率也就越高。"这种有机染料分子被称为醌型花青素,由于其化学结构和出色的吸收可见光的能力,使其成为可能。因此,它们也适合用作有机太阳能电池的活性层,奥特曼解释说。"利用光谱测量和模型,研究人员能够观察到染料分子中飞驰的激子。"奥特曼补充说:"我们的设计所提供的1.33电子伏特的数值远远高于有机半导体中的数值--可以说有机染料分子形成了一种超级高速公路。"这些基础性的新发现可以为在有机固体物质中实现有针对性的、更高效的激子传输铺平道路,从而加速开发性能更高的有机太阳能电池和有机发光二极管。...PC版:https://www.cnbeta.com.tw/articles/soft/1399865.htm手机版:https://m.cnbeta.com.tw/view/1399865.htm

封面图片

新技术大幅提高柔性太阳能电池的发电效率

新技术大幅提高柔性太阳能电池的发电效率研究人员通过引入"客体"成分,提高了三元有机太阳能电池的效率。这种改性可改善太阳能电池对阳光的吸收,优化太阳能电池的运行。通过对这种客体成分进行战略性放置和改性,他们实现了超过19%的功率转换效率提升。有机与无机太阳能电池有机光伏太阳能电池(OSC)是一种使用有机材料(通常由小分子或聚合物组成)将太阳光转化为电能的太阳能电池,有别于使用晶体硅或其他无机材料的传统无机太阳能电池。开放式太阳能电池的主要优点之一是灵活轻便。利用喷墨打印等基于溶液的工艺,它们可以廉价地制成柔性卷筒而非刚性面板,因此适合传感器、便携式充电器或可穿戴电子设备等多种应用。OSC还可以设计成半透明或各种颜色,从而可以美观地集成到建筑物、窗户或其他结构中。不过,与无机太阳能电池相比,开放式晶体管的功率转换效率(PCE)较低。TOSC在一定程度上改变了这一状况。传统的二元有机太阳能电池由供体材料和受体材料组成,与之不同的是,TOSC包含额外的第三种成分,通常称为"客体"。引入这种客体成分是为了优化太阳能电池运行的各个方面,从调整电池的内部能量流到改进电池如何将光能转化为电能。三元组份活性层中嵌入的主/客体"合金"聚集说明。资料来源:李永海客体"成分的作用对于提高PCE尤为重要的是,客体成分还可以拓宽可吸收光的光谱。通过选择一种能在供体或受体未覆盖的范围内吸收光的客体材料,可以提高电池对阳光的整体吸收率。同时,还能很好地调整混合薄膜的形态,使其能够进行激子解离、电荷生成和传输。鉴于客体成分可以发挥多种不同的功能,其在太阳能电池'三明治'或矩阵中的具体位置可以从根本上改变性能。该研究的合著者李永海说:"根据其位置的不同,客体元件既可以以闪电般的速度传输能量,也可以帮助捕捉更多的阳光。"现有三种不同位置的可能性:嵌入供体材料,嵌入受体材料,或以某种方式分散在供体和受体界面之间,形成混合的合金状结构(聚集体)。但到目前为止,人们还很少关注客体成分的位置问题。实验细节和结果在研究中,研究人员在TOSC中使用了一种名为LA1的客体成分(与其他客体成分材料的结晶度不同)。LA1是一种小分子受体,研究人员用苯基烷基侧链对其进行了修饰--苯基烷基侧链是一种官能团(分子中原子的集合,具有自身的一系列特性),常用于设计用于光伏设备的有机材料。用苯基烷基侧链对LA1进行改性,在保持令人满意的兼容性的同时,改善了其结晶度和排列,从而提高了其在TOSC中的性能。此外,研究人员还通过对与主成分相互作用的各种条件(包括主/客体相容性、表面能、结晶动力学和分子间相互作用)进行调控,来调节客体成分的分布。通过这种方法,他们在大多数客体分子中发现了类似合金的聚集体,这些聚集体也渗透并分散到宿主分子中。令人印象深刻的是,这些嵌入式主/客"合金"的结晶尺寸可以很容易地进行微调,以改善电荷传输和抑制电荷重组。因此,研究人员最初能够实现15%以上的PCE增效,然后通过将客体成分与作为主成分的Y6系列受体相结合,他们实现了19%以上的更大增效。研究人员认为,他们已经取得了相当大的实验成功,但这些增益的驱动力在理论上仍然不太清楚。展望未来,研究人员希望能更好地阐明这些基本机制。...PC版:https://www.cnbeta.com.tw/articles/soft/1382215.htm手机版:https://m.cnbeta.com.tw/view/1382215.htm

封面图片

突破极限:串联太阳能电池转化效率超过20%

突破极限:串联太阳能电池转化效率超过20%这项研究发表在2024年3月4日出版的《能源材料与器件》杂志上。光伏技术是一种利用太阳光并将其转化为电能的技术,因其提供清洁的可再生能源而广受欢迎。科学家们不断努力提高太阳能电池的功率转换效率,即效率的衡量标准。传统单结太阳能电池的功率转换效率已超过20%。要使单结太阳能电池的功率转换效率达到肖克利-奎塞尔极限以上,需要更高的成本。然而,通过制造串联太阳能电池,可以克服单结太阳能电池的肖克利-奎塞尔极限。利用串联太阳能电池,研究人员可以通过将太阳能电池材料堆叠在一起获得更高的能源效率。研究小组利用一种名为硒化锑的半导体,致力于制造串联太阳能电池。过去对硒化锑的研究主要集中在单结太阳能电池的应用上。但研究小组知道,从带隙的角度来看,这种半导体可能被证明是串联太阳能电池的合适底部电池材料。"硒化锑是一种适用于串联太阳能电池的底部电池材料。然而,由于使用硒化锑作为底部电池的串联太阳能电池的报道很少,因此人们很少关注它的应用。"中国科学技术大学材料科学与工程学院教授陈涛说:"我们用它作为底部电池组装了一个具有高转换效率的串联太阳能电池,证明了这种材料的潜力。与使用单层半导体材料的单结太阳能电池相比,串联太阳能电池吸收阳光的能力更强。串联太阳能电池能将更多的太阳光转化为电能,因此比单结太阳能电池更节能。"演示概念验证串联太阳能电池,该电池由硒化锑和宽带隙过磷酸钙作为底部和顶部子电池吸收材料组成。通过优化顶部电池的透明电极和底部电池的制备工艺,该装置实现了超过20%的功率转换效率。来源:《能源材料与器件》,清华大学出版社研究小组制作了具有透明导电电极的过氧化物/硒化锑串联太阳能电池,以优化光谱响应。他们通过调整顶部电池透明电极层的厚度,获得了超过17%的高效率。他们通过引入双电子传输层,优化了硒化锑底部电池,实现了7.58%的功率转换效率。当他们用机械方法将顶部和底部电池组装成四端串联太阳能电池时,功率转换效率超过了20.58%,高于独立子电池的功率转换效率。他们的串联太阳能电池具有出色的稳定性和无毒成分。陈说:"这项工作提供了一种新的串联器件结构,并证明硒化锑是一种很有前景的吸收材料,可用于串联太阳能电池的底部电池应用。"展望未来,研究小组希望努力开发集成度更高的双端串联太阳能电池,并进一步提高器件性能。"硒化锑的高稳定性为制备两端串联太阳能电池提供了极大的便利,这意味着它在与多种不同类型的顶层电池材料搭配时可能会取得良好的效果。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1433485.htm手机版:https://m.cnbeta.com.tw/view/1433485.htm

封面图片

研究人员利用分子工程提高有机太阳能电池效率

研究人员利用分子工程提高有机太阳能电池效率聚合物太阳能电池以重量轻、灵活性强而著称,是可穿戴设备的理想选择。然而,生产过程中所需的有毒卤化溶剂却阻碍了它们的广泛应用。这些溶剂带来了环境和健康风险,限制了这些太阳能电池的吸引力。遗憾的是,毒性较低的替代溶剂缺乏相同的溶解性,因此需要更高的温度和更长的加工时间。这种低效率进一步阻碍了聚合物太阳能电池的应用。开发出一种无需使用卤化溶剂的方法,可以显著提高有机太阳能电池的效率,使其更适用于可穿戴技术。在最近发表的一篇论文中,研究人员概述了如何利用侧链工程改善聚合物供体和小分子受体之间的分子相互作用,从而减少对卤化加工溶剂的需求。论文最近发表在《纳米研究能源》(NanoResearchEnergy)上。"聚合物供体和小分子受体的混合形态受其分子相互作用的影响很大,而分子相互作用可由供体和受体材料之间的界面能决定。当它们的表面张力值相似时,供体和受体之间的界面能和分子相互作用预计会更有利,"韩国庆尚国立大学教授Yun-HiKim说。"为了增强聚合物供体的亲水性并减少分子脱杂,侧链工程可能是一条可行的途径。"侧链工程的作用侧链工程是指在分子的主链上添加一个称为侧链的化学基团。侧链中的化学基团会影响大分子的性质。研究人员推测,添加基于低聚乙二醇(OEG)的侧链将提高聚合物供体的亲水性,这要归功于侧链中的氧原子。具有亲水性的分子会被水吸引。聚合物太阳能电池的整体性能和聚合物太阳能电池中亲水侧链分子的热稳定性示意图根据整体性能和热稳定性,在制造PSC时,碳氢化合物和亲水性低聚乙二醇(2EG)的混合物比标准溶剂的性能更好。资料来源:清华大学出版社《纳米研究能源》聚合物供体和小分子受体亲水性的不同会影响它们的相互作用。随着聚合物供体亲水性的增加以及它们与小分子受体之间相互作用的改善,可以使用非卤化加工溶剂,而不会影响太阳能电池的性能。事实上,用OEG侧链连接苯并二噻吩聚合物供体制成的聚合物太阳能电池的功率转换效率为17.7%,高于15.6%。提高效率和稳定性为了比较结果,研究人员设计了带有OEG侧链、碳氢化合物侧链或50%碳氢化合物侧链和50%OEG侧链的苯并二噻吩基聚合物供体。Kim说:"这阐明了侧链工程对非卤化溶剂加工聚合物太阳能电池的混合形态和性能的影响。我们的研究结果表明,具有亲水性OEG侧链的聚合物可以提高与小分子受体的混溶性,并在非卤化加工过程中提高聚合物太阳能电池的功率转换效率和器件稳定性。"除了提高功率转换效率外,带有OEG侧链的聚合物太阳能电池还具有更高的热稳定性。热稳定性对于聚合物太阳能电池的规模化至关重要,因此研究人员将其加热到120摄氏度,然后比较功率转换效率。加热120小时后,带有碳氢化合物侧链的聚合物的功率转换效率仅为最初的60%,而且表面出现了不规则现象,而碳氢化合物和OEG的混合物则保持了最初功率转换效率的84%。Kim说:"我们的研究结果可以为设计聚合物供体提供有用的指导,从而利用非卤化溶剂加工生产出高效稳定的聚合物太阳能电池。"参考文献:SoodeokSeo、Jun-YoungPark、JinSuPark、SeungjinLee、Do-YeongChoi、Yun-HiKim和BumjoonJ.Kim于2023年7月24日发表在《纳米研究能源》上的论文:"亲水侧链聚合物供体可通过非卤化溶剂处理实现高效、热稳定的聚合物太阳能电池"。doi:10.26599/nre.2023.9120088编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1403357.htm手机版:https://m.cnbeta.com.tw/view/1403357.htm

封面图片

隆基 BC 技术刷新硅太阳能电池效率世界纪录

隆基BC技术刷新硅太阳能电池效率世界纪录隆基绿能今日官微消息,近日,经德国哈梅林太阳能研究所(ISFH)权威认证报告,隆基绿能自主研发的背接触晶硅异质结太阳电池(HeterojunctionBackContact,HBC),利用全激光图形化可量产制程工艺获得27.09%的电池转换效率,创造单结晶硅太阳能电池效率的新世界纪录,这是继2022年11月隆基绿能创造26.81%的硅太阳能电池效率世界纪录后的又一次突破。

封面图片

硅钙钛矿太阳能电池即将彻底改变发电效率

硅钙钛矿太阳能电池即将彻底改变发电效率钙钛矿是一类与钙钛氧化物矿物具有相同晶体结构的化合物。这种高度灵活的材料可用于多种应用,包括超声波机器、存储芯片和发电太阳能电池。最近的研究表明,钙钛矿可能是推动太阳能电池行业发电效率达到新水平的“秘密武器”。目前的太阳能电池技术正在迅速接近其最高效率水平,但仍达不到太阳能作为应对全球变暖的重要缓解因素所需的水平。科学家表示,效率必须超过30%,且新太阳能电池板的安装率必须比目前的采用水平提高十倍。通过在硅基底上添加额外的钙钛矿层(两者都具有半导体特性),可以增强从阳光中捕获的能量。硅层捕获红光中的电子,而钙钛矿层捕获蓝光。能量吸收能力的提高将导致太阳能整体价格的降低,从而加快太阳能电池板的部署和采用。科学家们花费数年时间开发高效的硅钙钛矿太阳能电池技术,2023年似乎将标志着该领域的一个重要里程碑。最近的研究进展已成功将硅-钙钛矿串联电池的效率提高到30%以上。进展速度如此之快,以至于这项技术很快就会在商用产品中展示其增强的功能。沙特阿拉伯阿卜杜拉国王科技大学材料科学与工程教授StefaanDeWolf认为,2023年太阳能电池技术领域将带来重大进展。DeWolf的团队已经在硅钙钛矿太阳能电池中实现了33.7%的效率水平,但他们的工作细节仍需要在科学期刊上发表。另一个由德国亥姆霍兹柏林材料与能源中心的SteveAlbrecht领导的研究小组最近发表了一项关于串联硅钙钛矿电池的研究,该电池可以实现高达32.5%的功率转换效率。由瑞士洛桑联邦理工学院的XinYuChin领导的第三个小组已经证明,串联电池的效率达到31.25%,具有“高效率和低制造成本的潜力”。DeWolf表示,超过30%的能源门槛将增强人们对“高性能、低成本光伏发电可以推向市场”的信心。到2022年,太阳能发电容量将达到1.2太瓦(TW),到2050年必须增加到至少75太瓦,才能缓解全球变暖和温室气体排放带来的最灾难性的情况。商业领域正在积极致力于提高太阳能电池的效率。中国最大的制造商(隆基股份)在实验室中已经达到了33.5%的效率。下一步涉及将高效硅钙钛矿串联电池的尺寸从实验条件(1平方厘米)扩大到商业级特征(15平方厘米)。DeWolf对实现这一目标充满信心。...PC版:https://www.cnbeta.com.tw/articles/soft/1370097.htm手机版:https://m.cnbeta.com.tw/view/1370097.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人