科学家计算出体量巨大的全球地下土壤无机碳存量

科学家计算出体量巨大的全球地下土壤无机碳存量上层土(蜕皮表层)因有机质大量积累而呈深色,下层土(钙质地层)因碳酸钙的存在而呈白色。根据《中国土壤分类学》,该土壤类型为钙质硅质寒武系。资料来源:张甘霖在发表于《科学》的一项研究中,中国科学院地理科学与资源研究所黄媛媛研究员和中国科学院土壤研究所张甘霖研究员领导的研究人员与合作者一起,量化了SIC的全球存储量,对这一长期存在的观点提出了挑战。研究人员发现,在全球土壤表层两米处以SIC形式储存的碳高达23050亿吨,是全球所有植被中碳含量总和的五倍多。这个隐藏的土壤碳库可能是了解碳如何在全球移动的关键。"但问题是:这个巨大的碳库很容易受到环境变化的影响,尤其是土壤酸化。酸性物质会溶解碳酸钙,并以二氧化碳气体或直接进入水中的形式将其排出,"黄教授说。"由于工业活动和高强度耕作,中国和印度等国家的许多地区正在经历土壤酸化。如果不采取补救措施和更好的土壤耕作方法,世界很可能在未来三十年内面临SIC的干扰。"地球历史上积累的对SIC的干扰对土壤健康有着深远的影响。这种破坏损害了土壤中和酸性、调节养分水平、促进植物生长和稳定有机碳的能力。从根本上说,SIC在储存碳和支持依赖于它的生态系统功能方面发挥着至关重要的双重作用。研究人员发现,每年约有11.3亿吨无机碳从土壤流失到内陆水域。这种流失对陆地、大气、淡水和海洋之间的碳传输有着深远的影响,但往往被忽视。虽然社会已经认识到土壤的重要性,认为它是以自然为基础的应对气候变化解决方案的基本组成部分,但大部分关注点都集中在有机碳上。现在,无机碳显然同样值得关注。这项研究强调了将无机碳纳入气候变化减缓战略的紧迫性,将其作为维持和加强碳固存的额外杠杆。旨在每年增加(大部分)0.4%SOC的"4permilleinitiative"等国际计划也应考虑无机碳在实现可持续土壤管理和气候减缓目标中的关键作用。研究人员希望通过扩大对土壤碳动态的了解,将有机碳和无机碳都包括在内,从而制定出更有效的战略来维护土壤健康、增强生态系统服务和减缓气候变化。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1427901.htm手机版:https://m.cnbeta.com.tw/view/1427901.htm

相关推荐

封面图片

大自然的岔路口:土壤的碳捕获困境

大自然的岔路口:土壤的碳捕获困境研究人员确定了决定土壤是捕获碳还是以二氧化碳形式释放碳的关键因素,突出了分子相互作用和土壤化学的作用,可能有助于减缓气候变化的努力。Smectite粘土(如图所示)含有已知能在天然土壤中固碳的粘土矿物。资料来源:FrancescoUngaro通过结合实验室实验和分子建模,研究人员研究了有机碳生物分子与一种以捕获土壤中有机物而闻名的粘土矿物之间的相互作用。他们发现,静电荷、碳分子的结构特征、土壤中周围的金属养分以及分子间的竞争都对土壤捕集碳的能力(或无能)起着重要作用。新发现可以帮助研究人员预测哪些土壤化学成分最有利于捕获碳,从而有可能找到基于土壤的减缓人类造成的气候变化的解决方案。这项研究最近发表在《美国国家科学院院刊》上。该研究的资深作者、西北大学的LudmillaAristilde说:"土壤中储存的有机碳约为大气中碳含量的十倍。如果这个巨大的储存库受到干扰,将会产生巨大的连锁反应。目前有很多人在努力将碳封存起来,以防止它进入大气层。如果我们想这样做,那么我们首先必须了解其中的机制。"作为环境过程中有机物动力学方面的专家,Aristilde是西北大学麦考密克工程学院土木与环境工程副教授。王家兴是Aristilde实验室的博士生,也是论文的第一作者。西北大学本科生RebeccaWilson是论文的第二作者。普通粘土土壤固碳量达25000亿吨,是地球上最大的碳汇之一,仅次于海洋。尽管土壤就在我们身边,但研究人员才刚刚开始了解它是如何从碳循环中锁碳固碳的。为了研究这一过程,阿里斯蒂尔德和她的团队研究了埃米土,这是一种已知能在天然土壤中固碳的粘土矿物。然后,他们研究了粘土矿物的表面如何与十种不同的生物大分子结合,其中包括氨基酸、与纤维素有关的糖和与木质素有关的酚酸,它们的化学性质和结构各不相同。"我们决定研究这种粘土矿物,因为它无处不在,"Aristilde说。"几乎所有土壤都含有粘土矿物。而且,粘土普遍存在于半干旱和温带气候地区--我们知道这些地区将受到气候变化的影响。"异性相吸阿里斯蒂尔德和她的团队首先研究了粘土矿物与单个生物分子之间的相互作用。由于粘土矿物带负电荷,带正电荷的生物分子(赖氨酸、组氨酸和苏氨酸)的结合力最强。但有趣的是,这种结合并非完全由静电荷决定。研究人员利用三维计算模型发现,生物分子的结构也发挥了作用。他说:"在有些情况下,两个分子都带正电,但其中一个分子与粘土的相互作用比另一个更好。这是因为结合的结构特征也很重要。分子必须足够灵活,能够采用一种结构排列方式,使其带正电荷的成分与粘土对齐。例如,赖氨酸有一个带正电荷的长臂,可以用来固定自己。"朋友的帮助按照这种逻辑,人们可能会认为带负电荷的生物分子无法与粘土结合。但阿里斯蒂尔德和她的团队发现,周围的天然金属养分可以介入其中。带正电荷的金属(如镁和钙)在带负电荷的生物分子和粘土矿物之间架起了一座桥梁,形成了一种结合。即使是通常不会与粘土结合的生物分子,当镁存在时,也能够看到其结合率显著提高。因此,土壤中的天然金属成分可以促进碳捕集。虽然这是一个广泛报道的现象,但研究人员揭示了其结构和机制。混合与交融在研究单个生物分子与粘土矿物之间的相互作用时,研究人员发现结合是可预测和直接的。为了获得更接近真实世界环境的信息,阿里斯蒂尔德和她的团队将不同的生物分子混合在一起。"我们知道,环境中不同类型的生物分子是共存的,"阿里斯蒂尔德说。"因此,我们还进行了生物分子混合物的实验。虽然研究人员最初认为生物分子会相互竞争与粘土相互作用,但他们却发现了意想不到的行为。一个令人惊讶的转折是,即使是具有柔性结构的带正电荷的生物大分子也会受到抑制,无法与粘土矿物结合。虽然它们在单独存在时很容易与粘土结合,但生物大分子相互结合的冲动似乎取代了它们对粘土的吸引力。这在以前是没有过的。两种生物分子之间的吸引能量实际上高于生物分子对粘土的吸引能量。这导致吸附力下降。这改变了我们对分子如何在表面上竞争的看法。它们不仅仅是在争夺表面的结合位点。它们实际上可以相互吸引。下一步行动接下来,阿里斯蒂尔德和她的团队计划研究在包括热带气候在内的温暖地区发现的土壤中,生物分子是如何与矿物质相互作用的。在另一个相关项目中,他们的目标是探索有机物如何在河流和其他水系中迁移。阿里斯蒂尔德说:"既然我们已经研究了主要存在于温带地区的粘土矿物,我们就想了解其他类型的矿物。它们是如何捕获有机物的?过程是相同还是不同?如果我们想让碳继续留在土壤中,那么我们就需要了解它们是如何组合的,以及这种组合是如何影响微生物的可及性的。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1421805.htm手机版:https://m.cnbeta.com.tw/view/1421805.htm

封面图片

科学家计算出现在有20万亿只蚂蚁生活在地球上

科学家计算出现在有20万亿只蚂蚁生活在地球上当MarkWong着手分析489项昆虫学研究,横跨地球上的每个大陆、主要栖息地和生物群落时他有一个简单的目标:计算蚂蚁。获得最终答案的过程是漫长的,而且往往是乏味的。然后有一天,Wong和其他蚂蚁专家从另一边走了出来。PC版:https://www.cnbeta.com/articles/soft/1318247.htm手机版:https://m.cnbeta.com/view/1318247.htm

封面图片

科学家正利用土壤微生物的DNA帮助提高气候模型的准确性

科学家正利用土壤微生物的DNA帮助提高气候模型的准确性微生物模型利用广泛的基因组数据为土壤碳模拟提供动力。图片来源:VictorO.Leshyk插图这个新模型使科学家们能够更好地了解某些土壤微生物如何有效地储存植物根系提供的碳,并为农业战略提供信息,以保护土壤中的碳,支持植物生长和减缓气候变化。"我们的研究证明了直接从土壤中收集微生物遗传信息的优势。在此之前,我们只掌握了实验室研究的少数微生物的信息,"论文第一作者、伯克利实验室博士后研究员吉安娜-马施曼(GiannaMarschmann)说。"有了基因组信息,我们就能建立更好的模型,预测各种植物类型、作物甚至特定栽培品种如何与土壤微生物合作,更好地捕集碳。同时,这种合作还能增强土壤健康"。最近发表在《自然-微生物学》杂志上的一篇新论文介绍了这项研究。论文的通讯作者是伯克利实验室的EoinBrodie和劳伦斯利弗莫尔国家实验室的JenniferPett-Ridge,后者领导着"微生物持久存在"土壤微生物组科学重点领域项目,该项目由能源部科学办公室资助,以支持这项工作。看见看不见的东西-微生物对土壤健康和碳的影响土壤微生物帮助植物获取土壤养分,抵抗干旱、疾病和虫害。它们对碳循环的影响在气候模型中的体现尤为重要,因为它们会影响土壤中储存的碳量或在分解过程中以二氧化碳形式释放到大气中的碳量。通过利用这些碳构建自己的身体,微生物可以将碳稳定(或储存)在土壤中,并影响碳在地下的储存量和储存时间。这些功能与农业和气候的相关性正受到前所未有的关注。然而,仅一克土壤中就含有多达100亿个微生物和数千个不同物种,绝大多数微生物从未在实验室中被研究过。直到最近,科学家们才从实验室研究的极少数微生物中获得数据,为这些模型提供依据,其中许多微生物与需要在气候模型中体现的微生物无关。Brodie解释说:"这就好比根据只生长在热带森林中的植物所提供的信息,为沙漠建立生态系统模型。"为了应对这一挑战,科学家团队直接利用基因组信息建立了一个模型,该模型能够适应任何需要研究的生态系统,从加利福尼亚的草原到北极解冻的永久冻土。该模型利用基因组深入了解土壤微生物的功能,研究小组将这种方法用于研究加利福尼亚牧场中植物与微生物组之间的相互作用。牧场在加州具有重要的经济和生态意义,占陆地面积的40%以上。研究重点是生活在植物根部周围的微生物(称为根圈)。这是一个重要的研究环境,因为尽管根区只占地球土壤体积的1-2%,但据估计,根区储存了地球土壤中30-40%的碳,其中大部分碳是由根系在生长过程中释放出来的。为了建立这个模型,科学家们利用加州大学霍普兰研究与推广中心提供的数据,模拟了微生物在根部环境中的生长情况。不过,这种方法并不局限于特定的生态系统。由于某些遗传信息与特定的性状相对应,就像人类一样,基因组(模型所基于的)与微生物性状之间的关系可以转移到世界各地的微生物和生态系统中。研究小组开发了一种新方法来预测微生物的重要性状,这些性状会影响微生物利用植物根系提供的碳和养分的速度。研究人员利用该模型证明,随着植物的生长和碳的释放,由于根系化学和微生物性状之间的相互作用,会出现不同的微生物生长策略。特别是,他们发现,生长速度较慢的微生物在植物生长后期会受到碳释放类型的青睐,而且它们在利用碳方面的效率出奇地高--这使它们能够在土壤中储存更多的这种关键元素。这一新的观测结果为改进模型中根系与微生物之间的相互作用提供了依据,并提高了预测微生物如何影响气候模型中全球碳循环变化的能力。"这些新发现对农业和土壤健康具有重要意义。通过我们正在建立的模型,我们越来越有可能利用对碳如何在土壤中循环的新认识。这反过来又为我们提供了可能性,使我们能够提出保护土壤中宝贵的碳的策略,从而在可行的范围内支持生物多样性和植物生长,以衡量其影响,"马施曼说。这项研究强调了利用基于遗传信息的建模方法来预测微生物性状的威力,有助于揭示土壤微生物组及其对环境的影响。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1420579.htm手机版:https://m.cnbeta.com.tw/view/1420579.htm

封面图片

被低估的苔藓如何制造更好的土壤并帮助应对气候变化?

被低估的苔藓如何制造更好的土壤并帮助应对气候变化?从沙漠到北极地区,苔藓随处可见。尽管苔藓无处不在,但它们常常被忽视,而维管束植物则在改善土壤、维持植物多样性和生态系统方面的作用已被充分研究。维管束植物既有木质化(类似木材)组织,用于在整个植物中运输水和矿物质,也有非木质化组织,用于帮助光合作用。相比之下,苔藓是无血管植物,通过其表面吸收水和营养。它们的根也是不同的,有被称为根状茎的生长物将它们固定在土壤表面。正如它们的名字所示,土壤苔藓生长在土壤的表面。它们也是分布最广泛的陆地植物之一,但它们如何影响生态系统却很少被研究。现在,由新南威尔士大学悉尼分校的研究人员领导的对苔藓进行的最全面的全球实地研究,考察了土壤苔藓的自然栖息地,以确定它对地球有多么重要。该研究的主要作者和通讯作者大卫-埃尔德里奇(DavidEldridge)说:"我们最初对没有受到太多干扰的本地植被的自然系统与公园和花园等人类制造的系统--我们的绿色空间--有何不同感兴趣。"所以在这项研究中,我们想更详细地了解苔藓以及它们在为环境提供基本服务方面的实际作用。"研究人员收集了生长在地球上超过123个生态系统土壤上的苔藓样本,从茂盛的雨林到沙漠到冰雪景观。他们发现,苔藓覆盖了地球上令人难以置信的360万平方英里(940万平方公里)的面积,这接近于加拿大或中国的面积。研究人员发现,土壤中的苔藓在24个方面有利于土壤和邻近的植物,包括维持土壤的生物多样性、养分循环、有机物的分解、维持微生物种群和控制土壤病原体。埃尔德里奇说:"我们研究了在以苔藓为主的土壤中发生了什么,以及在没有苔藓的土壤中发生了什么。我们惊奇地发现,苔藓正在做所有这些神奇的事情。"此外,研究人员发现,苔藓对于控制改变气候的二氧化碳至关重要,在全球范围内,与没有苔藓的土壤相比,土壤苔藓有可能从大气中吸取70.8亿吨(64.3亿吨)二氧化碳。基于他们的发现,研究人员敦促人们不要无视苔藓的好处,在把它从花园里扯出来之前要三思。埃尔德里奇说:"人们认为如果苔藓生长在土壤上,就意味着土壤是不育的或有问题的。但它实际上在做伟大的事情,你知道,在土壤的化学方面,比如增加更多的碳和氮,以及在你受到大量干扰时成为主要的稳定剂。"研究人员打算继续他们的研究,观察苔藓是否能像在自然区域一样使城市环境中的土壤恢复活力。埃尔德里奇说:"我们还热衷于制定战略,将苔藓重新引入退化的土壤,以加快再生过程。苔藓很可能为启动严重退化的城市和自然区土壤的恢复提供了完美的载体"。这项研究发表在《自然-地球科学》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1357777.htm手机版:https://m.cnbeta.com.tw/view/1357777.htm

封面图片

在农田里"种植"火山岩可能会改变碳捕集的游戏规则

在农田里"种植"火山岩可能会改变碳捕集的游戏规则这项研究首次对全球农田施用玄武岩可能产生的二氧化碳减少量进行了全球估算。该研究发表在《地球的未来》(Earth'sFuture)杂志上,该杂志是美国地质学家协会(AGU)针对地球及其居民的过去、现在和未来开展跨学科研究的期刊。增强岩石风化:有前途的方法这种类型的气候干预被称为强化岩石风化。它利用风化过程将二氧化碳自然封存在碳酸盐矿物中。这个想法很简单:以对人类有益的方式加速风化。如果与减排同时使用,它将有助于减缓气候变化的速度。研究报告的作者认为,与其他碳减排方法相比,这种方法可能更安全。领导这项研究的耶鲁大学气候科学家S.HunBaek说:"与其他气候干预措施相比,加强岩石风化的风险较小。它还能带来一些关键性的好处,比如使枯竭的土壤恢复活力和抵御海洋酸化,这可能会使它更受社会欢迎"。这项新研究探讨了将碎玄武岩(一种熔岩冷却后形成的快速风化岩石)应用于世界各地农田的潜力,并强调了哪些地区可以最有效地分解岩石。根据发表在AGU期刊《地球的未来》上的最新研究,一种名为"强化岩石风化"的气候干预策略如果在全球范围内得到应用,将有助于实现IPCC关于减缓气候变化的一个关键目标。强化岩石风化可改善土壤健康、固碳并对抗海洋酸化。资料来源:AGU耶鲁大学的地球化学家诺亚-普兰纳夫斯基(NoahPlanavsky)是这项研究的共同作者,他说:"这里蕴藏着巨大的潜力。虽然从基础科学的角度来看,我们还有很多东西要学,但还是有希望的,我们需要关注从市场和金融的角度我们能做些什么。"之前的一项研究使用了另一种计算二氧化碳去除量的方法来估算到2050年的碳减排量,但研究人员希望把目光投向国界之外和更远的未来。研究人员利用一种新的生物地球化学模型模拟了在全球耕地上应用碎玄武岩将如何吸收二氧化碳,测试了岩石风化增强对气候的敏感性,并确定了这种方法最有效的区域。研究结果和对未来的影响新模型模拟了从2006年到2080年,在两种排放情景下全球1000个农业基地岩石风化增强的情况。他们发现,在75年的研究期内,这些农田将吸收640亿吨二氧化碳。将这一数据推断到所有农田(即全球可能应用这一策略的总面积),在此期间可封存多达2.17亿吨的碳。"最新的IPCC报告称,到2100年,除了大幅减排之外,我们还需要清除100到1000千兆吨的碳,以防止全球气温上升超过1.5摄氏度,"Baek说:"扩大到全球耕地,我们发现的碳清除量估计值与实现这些气候目标所需的范围下限大致相当。"该研究强调,由于风化作用在炎热潮湿的环境中进展更快,因此在热带地区加强岩石风化作用比在高纬度地区更快见效。希望投资碳减排解决方案的农民和公司可以选择在热带地区应用玄武岩,从而实现成本和碳效益的双赢。该模型揭示了另一个令人鼓舞的结果:在气温升高的情况下,加强岩石风化的效果也很好,甚至更好一些。其他一些减少碳排放的方法,如依靠土壤有机碳储存的方法,随着气温的持续升高,其效果会越来越差。"增强岩石风化对气候变化的适应能力令人惊讶,"Baek说。"我们的研究结果表明,它对气候变化相对不敏感,在中度和重度全球变暖的情况下,效果大致相同。这让我们对其作为长期战略的潜力充满信心。"Planavsky说,农民们已经在田地里施用了数百万吨石灰石(一种碳酸钙岩石,既可以是碳源,也可以是碳汇)来提供养分和控制土壤酸度,因此逐步改变岩石类型可能意味着顺利过渡到大规模实施强化岩石风化。增强岩石风化技术已在世界各地的农场小规模应用。Planavsky说,下一步是努力实现"实际应用"。编译自:ScitechDaily相关文章:研究发现将石粉撒在农田上可吸收数十亿吨二氧化碳...PC版:https://www.cnbeta.com.tw/articles/soft/1422983.htm手机版:https://m.cnbeta.com.tw/view/1422983.htm

封面图片

天文学家计算出仙女星系质量 约为太阳的1.14万亿倍

天文学家计算出仙女星系质量约为太阳的1.14万亿倍基于此,他们成功绘制了有史以来观测范围最广且精度最高的仙女星系旋转曲线,并计算得到仙女星系质量约为1.14万亿倍太阳质量。相关研究成果在线发表于英国《皇家天文学会月刊》。仙女星系是距离银河系最近的大型漩涡星系,离地球大约250万光年。在由银河系、仙女星系等组成的本星系群中,仙女星系是唯一一个类似银河系且能够被完整详细观测的大型动力学系统。因此仙女星系是研究星系形成和演化的绝佳案例。“然而,因为仙女星系距离我们较远,天文学家证认其内部的天体非常困难,加之缺少这些天体的运动信息,所以,精确绘制仙女星系的旋转曲线是一项非常具有挑战性的工作。”论文共同通讯作者、云南大学教授陈丙秋告诉记者。此次,研究团队收集了13679个具有视向速度测量值的位于仙女星系的天体,绘制出距离仙女星系中心40.76万光年内的旋转曲线,精度达到5%—20%。研究结果显示,仙女星系的旋转曲线在其星系盘上保持恒定值约为每秒220千米,向外逐渐减小至外晕处时约为每秒170千米。质量是一个星系的基本物理属性。准确测量仙女星系的质量对于理解其物质分布、形成和演化历史以及在本星系群中的作用至关重要。基于该旋转曲线,研究团队构建了包含三个成分的仙女星系质量模型,给出了仙女星系的质量分布,并计算得到仙女星系的质量约为1.14万亿倍太阳质量。陈丙秋表示,这项研究为理解仙女星系乃至一般旋涡星系的质量分布提供了全新的认识,对进一步理解旋涡星系的动力学结构和形成演化具有重要意义。...PC版:https://www.cnbeta.com.tw/articles/soft/1416455.htm手机版:https://m.cnbeta.com.tw/view/1416455.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人