科学家发现普通细菌的嗜血行为

科学家发现普通细菌的嗜血行为这一研究成果发表在《eLife》杂志上,为了解血流感染的发生过程和潜在治疗方法提供了新的视角。华盛顿州立大学研究员阿登-贝林克(ArdenBaylink)拿着一个装有沙门氏菌的培养皿。贝林克和博士生西耶娜-格伦(SienaGlenn)发表的研究表明,世界上一些最致命的细菌会寻找并吃掉血清(人体血液的液体部分),血清中含有细菌可以用作食物的营养物质。图片来源:华盛顿州立大学兽医学院TedS.Warren细菌研究与实验"感染血液的细菌可能是致命的,"该研究的通讯作者、西悉尼大学兽医学院教授阿登-贝林克(ArdenBaylink)说。"我们了解到,一些最常引起血液感染的细菌实际上能感知人体血液中的一种化学物质,并向它游去"。贝林克和这项研究的第一作者、西悉尼大学博士生西耶娜-格伦发现,至少有三种细菌,即肠炎沙门氏菌、大肠埃希氏菌和柯氏柠檬杆菌会被人体血清吸引。这些细菌是导致炎症性肠病(IBD)患者(约占总人口的1%)死亡的主要原因。这些患者通常会有肠道出血,这可能是细菌进入血液的入口。华盛顿州立大学博士生西耶娜-格伦(SienaGlenn)使用高倍显微镜。格伦与助理教授阿登-贝林克(ArdenBaylink)及其同事合作发表的研究表明,世界上一些最致命的细菌会寻找并吃掉人体血液中的液体部分--血清。图片来源:华盛顿州立大学兽医学院TedS.Warren研究人员利用贝林克公司设计的一种名为"化学感知注射钻机测定法"的高倍显微镜系统,通过注射微量人体血清模拟肠道出血,观察细菌向出血源移动的过程。这种反应非常迅速--致病细菌只需不到一分钟的时间就能找到血清。新疗法的潜力作为研究的一部分,研究人员确定沙门氏菌有一种名为Tsr的特殊蛋白质受体,能让细菌感知并游向血清。利用一种叫做蛋白质晶体学的技术,他们能够看到这种蛋白质与丝氨酸相互作用的原子。科学家们认为,丝氨酸是细菌能够感知并消耗的血液中的化学物质之一。格伦说:"通过了解这些细菌是如何检测血液来源的,我们将来可以开发出阻断这种能力的新药。这些药物可以改善高血液感染风险的IBD患者的生活和健康状况。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1428275.htm手机版:https://m.cnbeta.com.tw/view/1428275.htm

相关推荐

封面图片

科学家发现应对抗生素耐药性细菌的新武器

科学家发现应对抗生素耐药性细菌的新武器耐抗生素病原体的一个例子是肺炎克雷伯氏菌,这是一种在医院里常见的细菌,以其毒性著称。如果没有有效的治疗方案,我们可能会看到肺炎和沙门氏菌等疾病的重新出现,这些疾病曾经很容易用抗生素治疗。日内瓦大学(UNIGE)的研究人员发现,乙去氧尿啶(edoxudine),一种在20世纪60年代开发的抗疱疹分子,可以破坏克雷伯氏菌的保护性表面,使其更容易被免疫细胞所消灭。研究人员的发现最近发表在PLOSONE杂志上。肺炎克雷伯氏菌是一种可以引起呼吸道、尿道和身体其他部位严重感染的细菌。肺炎克雷伯氏菌导致许多呼吸道、肠道和泌尿道感染。由于它对大多数常见的抗生素有抗药性,而且毒力很强,它的一些菌株对40%到50%的受感染者来说是致命的。现在迫切需要开发新的治疗分子来对付它。它是医院获得性感染的一个常见原因,对免疫系统较弱的人特别危险。肺炎克雷伯氏菌对许多抗生素具有抗药性,使其难以治疗。领导这项研究的UNIGE医学院细胞生理和代谢系教授PierreCosson解释说:"自20世纪30年代以来,医学一直依赖抗生素来摆脱致病细菌。但其他方法也是可能的,其中包括试图削弱细菌的防御系统,使它们无法再逃避免疫系统。这一途径似乎更有希望,因为肺炎克雷伯氏菌的毒性主要源于其逃避免疫细胞攻击的能力。"为了确定细菌是否被削弱,UNIGE的科学家们使用了一个具有令人惊讶的特点的实验模型:变形虫Dictyostelium。这种单细胞生物通过捕捉和摄取细菌为食,使用与免疫细胞用来杀死病原体的机制相同。"我们对这种变形虫进行了基因改造,以便它能够告诉我们它所遇到的细菌是否具有毒性。皮埃尔-科森解释说:"这个非常简单的系统然后使我们能够测试数以千计的分子,并确定那些能够降低细菌毒性的分子。"削弱细菌而不杀死它们开发一种药物是一个漫长而昂贵的过程,没有结果的保证。因此,UNIGE的科学家们选择了一种更快、更安全的策略:审查现有药物以确定可能的新治疗适应症。研究小组评估了已经上市的数百种药物对肺炎克雷伯氏菌的影响,这些药物有广泛的治疗适应症。一种为防治疱疹而开发的药物被证明是特别有希望的。通过改变保护细菌不受外部环境影响的表面层,这种药理学产品使其变得脆弱。研究人员说:"与抗生素不同,乙去氧尿啶不会杀死细菌,这限制了产生抗药性的风险,这是这种抗病毒策略的一个主要优势。"尽管这种治疗方法在人类身上的有效性还有待证实,但这项研究的结果令人鼓舞:乙去氧尿啶甚至对肺炎克雷伯氏菌的最强毒株也有作用,而且其浓度比治疗疱疹的浓度低。皮埃尔-科森总结说:"充分削弱细菌而不杀死它们是一种微妙的策略,但从短期和长期来看,它可能被证明是一种胜利。"...PC版:https://www.cnbeta.com.tw/articles/soft/1338061.htm手机版:https://m.cnbeta.com.tw/view/1338061.htm

封面图片

科学家发现常见细菌素食品抗菌剂的意外影响

科学家发现常见细菌素食品抗菌剂的意外影响细菌会产生称为细菌素的化学物质来杀死微生物竞争者。这些化学物质可以杀死食品中具有潜在危险的病原体,从而起到天然防腐剂的作用。Lantibiotics是一类具有特别强抗菌特性的细菌素,被食品工业广泛使用。尽管Lantibiotics被广泛使用,但人们对这些生物素如何影响食用者的肠道微生物群却知之甚少。肠道中的微生物生活在一种微妙的平衡之中,共生菌通过分解营养物质、产生代谢产物以及--重要的是--抵御病原体,为人体提供重要的益处。如果过多的共生菌被抗菌食品防腐剂不加区别地杀死,机会性致病菌可能会取而代之,造成严重破坏--其结果并不比一开始就吃了受污染的食物好多少。芝加哥大学的科学家在《ACS化学生物学》(ACSChemicalBiology)杂志上发表的一项新研究发现,最常见的一类Lantibiotics生物制剂对病原体和维持人体健康的肠道共生菌都有很强的抑制作用。从啤酒和香肠到奶酪和蘸酱,Nisin(乳酸链球菌素)是一种常用的杀菌剂。它是由生活在奶牛乳腺中的细菌产生的,但人类肠道中的微生物也会产生类似的杀菌剂。张振润(Zhenrun"Jerry"Zhang)博士是芝加哥大学唐纳德-F-斯坦纳医学教授兼杜乔索斯家庭研究所所长埃里克-帕默(EricPamer)医学博士实验室的博士后学者,他想研究这种天然产生的生物素对肠道共生菌的影响。张说:"从本质上讲,Nisin是一种抗生素,长期以来一直被添加到我们的食物中,但它如何影响我们的肠道微生物还没有得到很好的研究。尽管它在防止食品污染方面可能非常有效,但它也可能对我们人体的肠道微生物产生更大的影响。"他和他的同事挖掘了人类肠道细菌基因组的公共数据库,发现了产生六种与Nisin非常相似的不同肠道源Lantibiotics的基因,其中四种是新基因。然后,他们与伊利诺伊大学厄巴纳-香槟分校理查德-E.-赫克托化学讲座教授WilfredA.vanderDonk博士合作,生产了这些抗生素的不同版本,以测试它们对病原体和肠道共生菌的作用。研究人员发现,虽然不同的Lantibiotics具有不同的效果,但它们对病原体和普通细菌的杀灭作用是相同的。张说:"这项研究首次表明,肠道共生菌容易受到兰特生物的影响,有时甚至比病原体还敏感。从目前食物中的Lantibiotics含量来看,它们很可能也会影响我们的肠道健康。"张和他的团队还研究了Lantibiotics的结构,以便更好地了解它们的活性,从而了解如何利用它们的抗菌特性做好事。例如,在另一项研究中,帕默实验室发现,由四种微生物(包括一种能产生兰替生物素的微生物)组成的联合体有助于保护小鼠免受耐抗生素肠球菌感染。他们还在研究不同人群中抗兰特生物素基因的流行情况,以便更好地了解这类细菌如何在不同条件和饮食下定植于肠道。张说:"看来,Lantibiotics和其衍生的菌种并不总是对健康有益,因此我们正在寻找方法来抵消潜在的不良影响,同时利用它们更有益的抗菌特性。"...PC版:https://www.cnbeta.com.tw/articles/soft/1416485.htm手机版:https://m.cnbeta.com.tw/view/1416485.htm

封面图片

科学家发现生产纤维素的细菌可以在类似火星的环境中生存

科学家发现生产纤维素的细菌可以在类似火星的环境中生存包括哥廷根大学科学家在内的一个国际研究小组研究了在类似火星的环境中红茶菌培养物生存的可能性。红茶菌是一种流行的饮料,它是通过使用红茶菌培养物(一种细菌和酵母的共生培养物)发酵糖化茶而制成。令人惊讶的是,尽管模拟的火星大气破坏了红茶菌培养物的微生物生态,但一种产生纤维素的细菌物种仍然存在。该研究结果发表在《微生物学前沿》(FrontiersinMicrobiology)杂志上。2014年,在欧空局的帮助下,从事"生物和火星实验"(BIOMEX)项目的研究人员将红茶菌培养物发射到国际空间站(ISS)。该项目目的是为了更好地了解纤维素作为生物标志物的弹性,红茶菌的基因组结构,以及它的地外生存行为。这些样品在地球上被重新激活,并在国际空间站外的模拟火星条件下培养了一年半之后,又进行了两年半的培养。哥廷根大学兽医研究所所长BertramBrenig教授与来自巴西米纳斯吉拉斯州立大学的研究人员一起工作,负责对重新激活的培养物和单个红茶菌培养物的元基因组进行测序和生物信息分析。“根据我们的元基因组分析,我们发现模拟的火星环境极大地破坏了红茶菌培养物的微生物生态。然而,我们惊讶地发现,Komagataeibacter属的纤维素生产细菌幸存下来。”这些结果表明,细菌产生的纤维素可能是它们在地外条件下生存的原因。这也提供了第一个证据,表明细菌纤维素可能是地外生命的生物标记,而纤维素基的膜或薄膜可能是保护生命和在地外定居点生产消费品的良好生物材料。这些实验的另一个有趣的方面可能是开发新的药物输送系统,例如,开发适合在太空使用的药物。另一个重点是调查抗生素抗性的变化:研究小组能够表明,抗生素和金属抗性基因的总数--意味着尽管环境中存在抗生素或金属,这些微生物仍可能存活--在暴露的培养物中得到了丰富。科学家们说:“这一结果表明,未来应特别关注太空医学中与抗生素抗性有关的困难。”...PC版:https://www.cnbeta.com/articles/soft/1302647.htm手机版:https://m.cnbeta.com/view/1302647.htm

封面图片

科学家开发出抗击耐药细菌的新型抗生素

科学家开发出抗击耐药细菌的新型抗生素苏黎世大学核磁共振设施负责人、化学家奥利弗-泽尔贝(OliverZerbe)说:"不幸的是,新抗生素的研发渠道相当空虚。自从上一种针对以前未使用过的靶分子的抗生素获得批准以来,已经过去了50多年。"在最近发表在《科学进展》(ScienceAdvances)上的一项研究中,泽尔贝现在讨论了一类高效抗生素的开发情况,这类抗生素能以新颖的方式对抗革兰氏阴性细菌。世卫组织将这类细菌列为极度危险的细菌。这类细菌由于具有双层细胞膜,因此抗药性特别强,例如耐碳青霉烯类肠杆菌。除了乌兹赫里大学的团队外,制药公司SpexisAG的研究人员也参与了这项由Innosuisse共同资助的合作研究。研究人员的研究起点是一种名为比他汀的天然肽,昆虫用它来抵御感染。比他汀能破坏革兰氏阴性细菌外膜和内膜之间重要的脂多糖运输桥梁,几年前,现已退休的哈佛大学教授约翰-罗宾逊(JohnRobinson)在一项研究中揭示了这一点。结果,这些代谢物在细胞内积聚,导致细菌死亡。然而,比他汀并不适合用作抗生素药物,原因之一是它的效力较低,而且细菌很快就会对它产生抗药性。因此,研究人员改变了比他汀的化学结构,以增强这种肽的特性。泽尔贝说:"要做到这一点,结构分析至关重要。为此,结构分析至关重要。"他的团队合成了细菌转运桥的各个组成部分,然后利用核磁共振(NMR)观察比他汀与转运桥结合的位置和方式,以及如何破坏转运桥。利用这些信息,SpexisAG公司的研究人员计划进行必要的化学修饰,以增强多肽的抗菌效果。除其他外,还进一步进行了突变,以提高分子的稳定性。合成肽随后在感染细菌的小鼠身上进行了测试,结果非常出色。泽尔贝说:"事实证明,这种新型抗生素非常有效,尤其是在治疗肺部感染方面。它们对耐碳青霉烯类肠杆菌也非常有效,而大多数其他抗生素在这方面都失效了"。此外,新开发的肽类药物对肾脏没有毒性或危害,而且在血液中长期保持稳定--所有这些特性都是获得药物批准的必要条件。不过,在开始首次人体试验之前,还需要进一步的临床前研究。在选择最有前景的多肽进行研究时,研究人员确保它们也能有效对抗那些已经对比萨丁产生抗药性的细菌。泽尔贝说:"我们相信,这将大大减缓抗菌药耐药性的产生。我们现在有望获得一类新的抗生素,这种抗生素对抗药性细菌也同样有效"。...PC版:https://www.cnbeta.com.tw/articles/soft/1372775.htm手机版:https://m.cnbeta.com.tw/view/1372775.htm

封面图片

科学家发现首个已知可杀死细菌的RNA靶向毒素

科学家发现首个已知可杀死细菌的RNA靶向毒素来自麦克马斯特大学的科学家们发现了一种被细菌用来通过一种从未见过的机制杀死其他细菌的毒素。这种毒素是首次发现的直接针对RNA分子的毒素,该团队将其描述为“对细胞的全面攻击”,而这可能会导致一类新的抗生素的出现。在微观尺度上存在着一场巨大的战争,在那里,微生物为争夺资源而相互争斗,而有时,它们会用来对付对方的武器被证明对抗生素有用。这些毒素大多以蛋白质或DNA分子为目标,通过中断重要功能杀死细菌。这就是研究小组在研究一种由铜绿假单胞菌产生的名为RhsP2的毒素时的检查清单,铜绿假单胞菌是医院获得性感染如肺炎背后的一种常见细菌。三年来,研究人员调查了该毒素对这些常见目标的影响但都无果。最后,他们针对RNA--转录DNA以产生蛋白质的重要分子--测试了RhsP2并发现这是它的目标。虽然其他抗生素通过靶向参与这一过程的蛋白质来干扰RNA的合成,但该团队表示,这标志着第一个通过直接作用于RNA分子而发挥作用的抗菌毒素。该研究的论文第一作者NathanBullen说道:“(这是)对细胞的一次全面攻击。这种毒素进入其目标、劫持生命所需的一个基本分子然后利用该分子破坏正常过程。”围绕RhsP2的研究仍处于早期阶段,但该团队表示,随着进一步的工作,它最终可能为新一代的抗生素铺平道路,这很重要,因为我们迫切需要新的抗生素。该研究的论文第一作者JohnWhiteney表示:“我们的毒素所针对的一些RNA分子对细菌的生存能力是必不可少的,因此我们的毒素正在向我们展示细菌的RNA分子,而这些分子将是未来抗生素开发工作的良好目标。”...PC版:https://www.cnbeta.com/articles/soft/1313431.htm手机版:https://m.cnbeta.com/view/1313431.htm

封面图片

科学家发现新抗生素类别 可有效对抗耐药细菌

科学家发现新抗生素类别可有效对抗耐药细菌抗生素是现代医学的基础,在上个世纪极大地改善了全世界人民的生活质量。如今,我们往往认为抗生素是理所当然的,并严重依赖抗生素来治疗或预防细菌感染,例如,在癌症治疗、侵入性手术和移植过程中,以及在母亲和早产儿身上,抗生素可以降低感染风险。然而,全球抗生素耐药性的增加日益威胁着抗生素的有效性。为了确保未来能够获得有效的抗生素,开发不存在抗药性的新型疗法至关重要。乌普萨拉大学的研究人员最近在《美国国家科学院院刊》(ProceedingsoftheNationalAcademyofSciencesoftheUSA)上发表了他们的研究成果,介绍了作为多国联合体的一部分而开发的一类新型抗生素。他们描述的这类化合物以一种名为LpxH的蛋白质为靶标,这种蛋白质是革兰氏阴性细菌合成其最外层保护层(即脂多糖)的途径。并非所有细菌都会产生这一层,但那些会产生这一层的细菌包括世界卫生组织确定为最需要开发新型疗法的生物,其中包括已经对现有抗生素产生抗药性的大肠埃希菌和肺炎克雷伯菌。研究人员能够证明,这种新型抗生素对耐多药细菌具有很强的活性,并能治疗小鼠模型中的血液感染,从而证明了这种抗生素的前景。重要的是,由于这一类化合物是全新的,而LpxH蛋白尚未被用作抗生素的靶点,因此这一类化合物不会产生抗药性。这与目前临床开发中的许多"同类"抗生素形成了鲜明对比。虽然目前的研究结果很有希望,但在这类化合物进入临床试验之前,还需要做大量的工作。DOI:10.1073/pnas.2317274121编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1428294.htm手机版:https://m.cnbeta.com.tw/view/1428294.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人