研究人员用更快的引力波探测技术揭示宇宙奥秘 反应时间仅需30秒

研究人员用更快的引力波探测技术揭示宇宙奥秘反应时间仅需30秒这项研究的目标是在探测到中子星和黑洞后30秒内向天文学家和天体物理学家发出警报,帮助人们更好地了解中子星和黑洞,以及包括金和铀在内的重元素是如何产生的。这些研究成果最近发表在《美国国家科学院院刊》(PNAS)上,这是一份经同行评审、开放获取的科学杂志。引力波与时空的相互作用是在一个方向上压缩时空,而在垂直方向上拉伸时空。这就是为什么目前最先进的引力波探测器是L型的,并使用干涉测量法测量激光的相对长度,干涉测量法是一种观察两个光源结合产生的干涉图案的测量方法。探测引力波需要精确测量激光的长度:相当于测量距离最近的恒星(约四光年)的距离,精确到一根头发丝的宽度。该图显示了研究人员发出警报所需的时间,平均不到30秒。图片来源:安德鲁-托伊沃宁这项研究是全球引力波干涉仪网络LIGO-Virgo-KAGRA(LVK)协作的一部分。在最新的模拟活动中,使用了以前观测时段的数据,并添加了模拟引力波信号,以显示软件和设备升级的性能。该软件可以检测信号的形状,跟踪信号的表现,并估计事件中包括哪些质量,如中子星或黑洞。中子星是已知存在的最小、密度最大的恒星,是大质量恒星在超新星中爆炸时形成的。一旦该软件探测到引力波信号,它就会向用户(通常包括天文学家或天体物理学家)发送警报,告知信号在天空中的位置。随着这一观测时段的升级,科学家们能够在探测到引力波后更快地发送警报,时间不超过30秒。"有了这个软件,我们就能探测到中子星碰撞产生的引力波,这种引力波通常太微弱,除非我们知道确切的观测位置,否则是无法看到的,"明尼苏达大学双城分校物理与天文学院博士生安德鲁-托伊沃宁(AndrewToivonen)说。"首先探测到引力波将有助于确定碰撞的位置,帮助天文学家和天体物理学家完成进一步的研究"。天文学家和天体物理学家可以利用这些信息来了解中子星的行为方式,研究中子星和黑洞碰撞时的核反应,以及包括金和铀在内的重元素是如何产生的。这是使用激光干涉仪引力波天文台(LIGO)进行的第四次观测,它将一直观测到2025年2月。在前三次观测期间,科学家们对信号的探测进行了改进。本次观测结束后,研究人员将继续查看数据并做出进一步改进,目标是更快地发出警报。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1429366.htm手机版:https://m.cnbeta.com.tw/view/1429366.htm

相关推荐

封面图片

科学家们探测到了中子星与潜在黑洞在质量缝隙中碰撞产生的引力波

科学家们探测到了中子星与潜在黑洞在质量缝隙中碰撞产生的引力波低质量间隙黑洞(深灰色表面)与中子星的凝聚与合并,颜色从深蓝色(每立方厘米60克)到白色(每立方厘米600千克)不等,凸显了中子星低密度物质的强烈变形。资料来源:I.Markin(波茨坦大学)、T.Dietrich(波茨坦大学和马克斯-普朗克引力物理研究所)、H.Pfeiffer、A.Buonanno(马克斯-普朗克引力物理研究所)。2023年5月,就在LIGO-Virgo-KAGRA第四次观测运行开始后不久,位于美国路易斯安那州的LIGO利文斯顿探测器观测到了一个引力波信号,该信号来自于很可能是一颗中子星与一个质量为太阳2.5至4.5倍的紧凑天体的碰撞。中子星和黑洞都是紧凑型天体,是大质量恒星爆炸后的致密残余物。这个名为GW230529的信号之所以引人入胜,是因为它的质量较大。它处于已知最重的中子星和最轻的黑洞之间可能存在的质量差距之内。引力波信号本身并不能揭示这个天体的性质。未来对类似事件的探测,特别是那些伴随着电磁辐射爆发的事件,可能有助于解决这个问题。不列颠哥伦比亚大学助理教授、LIGO科学合作组织副发言人杰斯-麦基弗博士(Dr.JessMcIver)说:"这次探测是我们从第四次LIGO-Virgo-KAGRA观测运行中获得的第一个令人兴奋的结果,它揭示了中子星和低质量黑洞之间的类似碰撞的发生率可能比我们之前想象的要高。"由于只有一个引力波探测器看到了这一事件,因此评估它是否真实变得更加困难。这幅图像显示了低质量间隙黑洞(深灰色表面)与中子星的合并,颜色从深橙色(每立方厘米100万吨)到白色(每立方厘米6亿吨)不等。引力波信号用一组正偏振的应变振幅值表示,颜色从深蓝色到青色不等。资料来源:I.Markin(波茨坦大学)、T.Dietrich(波茨坦大学和马克斯-普朗克引力物理研究所)、H.Pfeiffer、A.Buonanno(马克斯-普朗克引力物理研究所)。检测技术的进步ICG的研究软件工程师GarethCabournDavies博士开发了用于在单个探测器中搜索事件的工具。他说"通过在多个探测器中看到事件来证实事件是我们从噪声中分离信号的最强大工具之一。通过使用适当的背景噪声模型,即使在没有其他探测器支持我们所看到的情况下,我们也能判断出一个事件"。在2015年探测到引力波之前,恒星质量黑洞的质量主要是通过X射线观测发现的,而中子星的质量则是通过无线电观测发现的。由此得出的测量结果分为两个截然不同的范围,两者之间的差距约为太阳质量的2到5倍。多年来,有少量测量结果蚕食了这一质量差距,天体物理学家对此仍有很大争议。最新研究结果的影响对GW230529信号的分析表明,它来自两个紧凑型天体的合并,其中一个天体的质量是太阳质量的1.2到2.0倍,另一个天体的质量是太阳质量的两倍多一点。虽然引力波信号没有提供足够的信息来确定这些紧凑的天体是中子星还是黑洞,但看起来较轻的天体很可能是中子星,而较重的天体则是黑洞。LIGO-Virgo-KAGRA合作组织的科学家们确信,较重的天体就在质量差距之内。引力波观测现在已经提供了近200个紧凑天体质量的测量值。其中,只有一次并合可能涉及质量鸿沟紧凑天体--GW190814信号来自黑洞与一个紧凑天体的并合,该天体的质量超过了已知最重的中子星,而且可能在质量鸿沟之内。来自美国西北大学的SylviaBiscoveanu博士说:"虽然之前已经报道过引力波和电磁波中存在质量间隙天体的证据,但这个系统尤其令人兴奋,因为它是首次引力波探测到与中子星配对的质量间隙天体。对这一系统的观测对双星演化理论和紧凑天体合并的电磁对应理论都有重要意义"。正在进行和未来的观察第四次观测运行计划持续20个月,其中包括几个月的间歇期,以便对探测器进行维护并进行一些必要的改进。截至2024年1月16日,也就是当前的间歇期开始时,总共发现了81个重要的候选信号。GW230529是经过详细调查后公布的第一个候选信号。第四次观测运行将于2024年4月10日恢复,LIGOHanford、LIGOLivingston和Virgo探测器将同时运行。观测运行将持续到2025年2月,不会再有中断观测的计划。在观测运行继续进行的同时,LIGO-Virgo-KAGRA的研究人员正在分析运行前半段的数据,并检查已经确定的其余80个重要候选信号。到2025年2月第四次观测运行结束时,观测到的引力波信号总数将超过200个。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1427286.htm手机版:https://m.cnbeta.com.tw/view/1427286.htm

封面图片

NASA宇宙愿景:通过引力波模拟我们的银河系

NASA宇宙愿景:通过引力波模拟我们的银河系天文学家利用模拟数据,通过引力波描绘了天空,揭示了空间观测站探测双星系统的必要性。像LISA这样的未来项目旨在发现成千上万个这种难以探测的系统,标志着空间观测模式的转变。(艺术家的插图--请看下面的模拟视频)。自2015年以来,地面天文台已经探测到大约一百个事件,这些事件代表了恒星质量黑洞、中子星或两者成对的系统的合并。这些信号通常持续不到一分钟,频率相对较高,可以出现在天空的任何地方,其来源远远超出了我们的银河系。请观看来自紧凑型双星系统模拟群体的引力波组合成整个天空的合成图。这些系统包含白矮星、中子星或处于紧密轨道上的黑洞。一旦天基引力波观测站在未来十年内开始工作,使用真实数据绘制这样的地图将成为可能。亮点表示信号较强的信号源,浅色表示频率较高的信号源。较大的色块表示位置不太清楚的信号源。插图显示了引力信号的频率和强度,以及LISA(激光干涉仪空间天线)的灵敏度极限,LISA是欧洲航天局(ESA)与美国国家航空航天局(NASA)合作设计的天文台,将于2030年代发射。资料来源:美国宇航局戈达德太空飞行中心马里兰大学学院帕克分校(UniversityofMaryland,CollegePark)和位于马里兰州格林贝尔特的美国宇航局戈达德太空飞行中心(NASA'sGoddardSpaceFlightCenter)的研究员塞西莉亚-奇伦蒂(CeciliaChirenti)说:"双星系统也充满了银河系,我们预计其中许多双星系统都包含白矮星、中子星和黑洞等紧密轨道上的紧凑天体。但我们需要一个太空观测站来'听'到它们,因为它们的引力波嗡嗡作响的频率太低,地面探测器无法探测到。"天文学家称这些系统为UCB(超小型双星),他们预计未来的天文台,如欧洲航天局(ESA)与美国国家航空航天局(NASA)合作领导的LISA(激光干涉仪空间天线),将探测到数以万计的UCB。UCB通常很难被发现--它们在可见光下通常很微弱,天文学家目前只知道少数几个轨道周期短于一小时的UCB。发现许多新的UCB是LISA的主要目标之一。LISA探路者的艺术印象,欧空局的任务是测试未来太空引力波观测站的技术。LISA是在LISA探路者和LIGO成功的基础上发展起来的天基引力波观测站。资料来源:ESA-C.Carreau利用模拟这些系统的预期分布和引力波信号的数据,研究小组开发出了一种方法,将这些数据组合成银河系UCB的全天空视图。发表在《天文学报》上的一篇论文介绍了这一技术。戈达德天体物理学家艾拉-索普(IraThorpe)说:"我们的图像直接类似于用特定类型的光线(如可见光、红外线或X射线)观测天空的全景图。引力波带来的希望是,我们可以用一种完全不同的方式观测宇宙,而这幅图像真正让我们认识到了这一点。我希望有一天我能在海报或T恤上看到用真实的LISA数据制作的版本。"...PC版:https://www.cnbeta.com.tw/articles/soft/1386083.htm手机版:https://m.cnbeta.com.tw/view/1386083.htm

封面图片

“中国天眼”探测到纳赫兹引力波存在关键证据

“中国天眼”探测到纳赫兹引力波存在关键证据据中新社报道,记者从中国科学院国家天文台获悉,这项纳赫兹引力波研究重要成果论文,星期四(6月29日)在中国天文学术期刊《天文与天体物理研究》(RAA)在线发表。作为引力波的一种,对频率低至纳赫兹的引力波进行探测,将有助于天文学家理解宇宙结构的起源,探测宇宙中最大质量的天体即超大质量黑洞的增长、演化及并合过程,也有助于物理学家洞察时空的基本物理原理。中科院国家天文台说,后续将充分发挥FAST脉冲星测时精度国际领先优势,加快纳赫兹引力波探测科研攻关,积累更长期的观测数据,逐步发表更高精度的探测结果,打开人类利用纳赫兹引力波探测宇宙的新窗口。同时,该台还将积极推进FAST扩展和升级,基于脉冲星测时阵列方法,实现纳赫兹引力波事件的常规观测,从而建成纳赫兹引力波天文台,并开启更高灵敏度和更高分辨率的低频射电观测研究新纪元,将中国加快建设成为引力波天文和射电天文强国。——

封面图片

天体物理学家发现新的引力波探测方法 探索宇宙最深处的奥秘

天体物理学家发现新的引力波探测方法探索宇宙最深处的奥秘科大物理系刘教授团队提出的突破性概念,可让地球磁层中的单个天文望远镜成为全球变暖信号的探测器。资料来源:香港科技大学在香港科技大学物理系副教授刘涛教授的领导下,研究小组的创新方法可以利用行星磁层中现有的、技术上可行的天文望远镜成功探测高频引力波。这将为以有效和技术可行的方式研究早期宇宙和剧烈宇宙事件开辟新的可能性。引力波(GW)由各种天文现象产生,如早期宇宙的相变和原始黑洞的碰撞。然而,引力波的影响极其微弱,目前只能通过干涉测量法在相对较低的频段发现引力波。因此,利用全球升温潜能值观测宇宙面临着巨大的技术挑战,特别是在探测一千赫以上的高频段时,干涉测量法的使用受到很大限制。为了解决这一难题,刘涛教授和他的博士后研究员张晨博士与中国科学院高能物理研究所的任静研究员合作,在最近的研究中取得了重大突破。这项研究利用了一个有趣的物理效应:驻留在磁场中的全球瓦可以转化为潜在的可探测电磁波。通过利用行星磁层内的延伸路径,转换效率得以提高,从而产生更多的电磁波信号。对于具有宽视场的望远镜来说,由于这种行星实验室内的信号通量具有广阔的角度分布,因此探测能力可以得到进一步提高。这种创新方法可使单个天文望远镜充当全球变暖信号的探测器。通过组合多个望远镜,可以实现高频全球变暖频率的广泛覆盖,从兆赫兹到1028赫兹不等。这一频率范围相当于天文观测中使用的电磁波谱,其中有很大一部分是以前在探测GW时从未探索过的。这项研究对低地球轨道卫星探测器和木星磁层内正在进行的任务的灵敏度进行了初步评估。这项研究发表在今年3月的《物理评论快报》上,随后,《自然-天文学》在5月发表了一篇题为"行星大小的实验室提供了宇宙学见解"的文章,重点介绍了这项研究。这强调了这项研究在为未来新型全球变暖探测技术研究铺平道路方面的重要意义。编译来源:ScitechDailyDOI:10.1103/PhysRevLett.132.131402DOI:10.1038/s41550-024-02285-w...PC版:https://www.cnbeta.com.tw/articles/soft/1433772.htm手机版:https://m.cnbeta.com.tw/view/1433772.htm

封面图片

NASA对强大的宇宙爆炸的观测揭示了超重中子星的情况

NASA对强大的宇宙爆炸的观测揭示了超重中子星的情况马里兰大学学院公园分校(UMCP)和位于马里兰州格林贝尔特的NASA戈达德太空飞行中心的研究员CeciliaChirenti解释说:"我们在NASA的NeilGehrelsSwift天文台、Fermi伽马射线太空望远镜和Compton伽马射线天文台探测到的700个短GRB中寻找这些信号,他在西雅图举行的美国天文学会第241次会议上介绍了这些发现。我们在康普顿于20世纪90年代初观测到的两个伽马射线暴中发现了这些伽马射线模式。"1月9日星期一,科学杂志《自然》上发表了一篇描述这些结果的论文,由Chirenti领导撰写。当一颗大质量恒星的核心耗尽燃料并崩溃时,就会形成中子星。过程中产生了的冲击波在超新星爆炸中吹走了恒星的其余部分。中子星通常将比我们的太阳更多的质量装入一个大约城市大小的球中,但是超过一定的质量,它们会坍缩成黑洞。康普顿数据和计算机模拟都显示,巨型中子星比已知的质量最大、测量最精确的中子星-J0740+6620多出20%,后者的质量几乎是太阳的2.1倍。超重中子星的体积也几乎是典型中子星的两倍,或者说是曼哈顿岛长度的两倍。宇航员在1991年4月从亚特兰蒂斯号航天飞机上部署康普顿伽马射线观测站时对其进行成像。资料来源:美国国家航空航天局/STS-37机组这些巨型中子星每分钟旋转近78000次--几乎是J1748-2446ad的两倍,后者是有记录以来最快的脉冲星。这种快速的旋转短暂地支持了这些天体的进一步坍缩,使它们能够存在短短的十分之几秒,之后它们继续形成黑洞,速度比眨眼还快。"我们知道短的GRB是在轨道上的中子星撞在一起时形成的,而且我们知道它们最终会坍缩成一个黑洞,但是对事件的确切顺序还不是很了解,"科尔-米勒说,他是UMCP的天文学教授,也是该论文的共同作者。"在某些时候,新生的黑洞会爆发出快速移动的粒子流,发出强烈的伽马射线闪光,这是能量最高的光的形式,我们想更多地了解它是如何发展的。"在这段动画中,一颗中子星(蓝色球体)在一个五颜六色的气体盘中心旋转,其中一些气体沿着磁场(蓝线)流动(蓝白弧线)到物体的表面。在这些系统的X射线中看到的准周期性振荡的一种解释是,在圆盘的内边缘附近形成了一个热点(白色椭圆形),它随着属性的变化而膨胀和收缩。由于这种不规则的轨道,热斑的发射在一定的频率范围内变化。资料来源:美国宇航局戈达德太空飞行中心概念图像实验室短的GRB通常闪耀不到两秒钟,但释放的能量相当于我们银河系中所有恒星一年所释放的能量。它们可以在10亿光年之外被探测到。合并的中子星也会产生引力波,即时空的涟漪,可以被越来越多的地面观测站探测到。对这些合并的计算机模拟显示,当中子星凝聚时,引力波表现出频率的突然快速跳跃,频率超过1000赫兹。这些信号对于现有的引力波观测站来说,速度太快,也太微弱,无法探测。但是Chirenti和她的团队推断,类似的信号可能出现在短GRB的伽马射线发射中。天文学家称这些信号为准周期振荡,或简称为QPO。与音叉的稳定铃声不同,QPO可以由几个接近的频率组成,这些频率随时间变化或消散。伽马射线和引力波QPOs都起源于两颗中子星凝聚时的物质漩涡中。虽然在Swift和Fermi暴中没有出现伽玛射线QPO,但康普顿的暴发和瞬态源实验(BATSE)在1991年7月11日和1993年11月1日记录的两个短的GRB符合这一要求。BATSE仪器的较大面积使它在寻找这些微弱的模式方面占了上风--这种明显的闪烁显示了超大型中子星的存在。研究小组认为,这些信号仅靠偶然发生的几率加起来不到三分之一。"这些结果非常重要,因为它们为未来引力波观测站对超大型中子星的测量奠定了基础,"没有参与这项工作的华盛顿乔治华盛顿大学物理系主任ChryssaKouveliotou说。到2030年代,引力波探测器将对千赫兹频率敏感,对超大中子星的短暂生命提供新的见解。在此之前,敏感的伽马射线观测和计算机模拟仍然是探索它们的唯一可用工具。...PC版:https://www.cnbeta.com.tw/articles/soft/1338831.htm手机版:https://m.cnbeta.com.tw/view/1338831.htm

封面图片

天文学家发现存在仅几毫秒的巨型中子星

天文学家发现存在仅几毫秒的巨型中子星这个物体是什么取决于总质量。一颗中子星的最大质量刚刚超过两个太阳,然后它就会在自身的引力下坍塌,形成一个黑洞--所以如果两颗中子星的总质量低于这个极限,它们就会形成一颗新的中子星。如果质量更高,则碰撞将产生一个黑洞。在新的研究中,天文学家检测到两颗中子星之间的合并导致了黑洞。然而,他们还发现了一个耐人寻味的中间阶段的信号--只存在短短几毫秒的超重中子星。根据对中子星合并的计算机模拟,如果形成了超重中子星,在事件中抛出的引力波中出现一种被称为准周期振荡(QPO)的特定模式。虽然目前的观测站还没有敏感到可以在引力波中探测到这些,但新研究的团队确定,它们的指纹也会在伽马射线中显示出来。为了测试这个想法,天文学家们扫描了三个天文台在过去几十年中捕获的700个短伽马射线暴(GRB)的档案数据。果然,伽马射线QPOs出现在康普顿伽马射线天文台捕获的两个事件中--一个发生在1991年7月,另一个发生在1993年11月。研究小组计算出,被探测到的超重中子星的质量超过太阳的2.5倍,并且在坍缩成黑洞之前将持续不超过300毫秒的时间。它们的旋转速度也会非常快--如果它们持续那么久的话,几乎是每分钟78000转。相比之下,旋转速度最快的脉冲星的时钟低于43000转。该团队表示,未来的引力波探测器应该变得足够敏感,可以直接发现超重中子星的特征,这可能有助于提供关于这些超短命物体的新信息。该研究发表在《自然》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1338723.htm手机版:https://m.cnbeta.com.tw/view/1338723.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人