受野生燕麦启发的自播生物杂交"机器人种子"

受野生燕麦启发的自播生物杂交"机器人种子"当能量突然释放时,种子尖尖的另一端就会被压入土壤中。然后,沿着果壳外侧的背向绒毛会帮助种子保持稳固。设计所依据的天然野生燕麦种子意大利技术研究所(IIT-ItalianInstituteofTechnology)和德国弗莱堡大学(UniversityofFreiburg)的研究人员试图将这种机制复制到一种可用于输送任何种类种子的装置中。这就是所谓的HybriBot。机器人的核心是种子(和一些肥料),种子被封装在一个由面粉和水制成的模塑胶囊里。胶囊干燥后,它就会被乙基纤维素包裹,这是一种不溶于水的环保型生物聚合物,常用于将肥料控制释放到土壤中。HybriBot没有使用人工合成的姊妹芒,而是使用从真正的野生燕麦种子中提取的真正芒。它还加入了真正的燕麦籽壳毛。整个机器人的重量为60毫克,大约是天然野生燕麦种子重量的三倍。左图为HybriBot的制造材料,包括3D打印的可重复使用的模具、面粉/水面团、野燕麦籽毛和野燕麦籽姊妹芒研究人员告诉我们,虽然生产过程听起来可能相当繁琐和耗时,但自动化机器人装配系统可以快速、低成本地生产出成千上万个装有种子的HybriBots。重要的是,所有材料都可以在环境中生物降解,而且对任何可能食用它们的动物都无毒。在目前进行的测试中,机器人已成功地将番茄、菊苣和柳叶菜等植物的种子送入盆栽土、粘土和沙子中。希望该技术得到进一步开发后,能应用于农业和林业领域。由印度理工学院的芭芭拉-马佐莱(BarbaraMazzolai)和伊莎贝拉-菲奥雷罗(IsabellaFiorello)领导的这项研究的论文最近发表在《先进材料》(AdvancedMaterials)杂志上。您可以在下面的视频中看到HybriBots的工作情况。...PC版:https://www.cnbeta.com.tw/articles/soft/1431813.htm手机版:https://m.cnbeta.com.tw/view/1431813.htm

相关推荐

封面图片

射击种子的植物启发研究人员设计更好的跳跃机器人

射击种子的植物启发研究人员设计更好的跳跃机器人由于种子在半毫秒内就能达到最大速度,因此视频必须以每秒10万帧的速度拍摄。您可以在下面的视频中看到种子的动作:由此产生的超慢动作镜头显示,当果实蒴果变干时,它们会像变形的木头一样向内翘起,从后面夹住封闭种子的两侧。一旦张力达到一定程度,种子就会飞出来。豪尔赫说:"这就好比你用手指挤压西瓜籽,它就会飞出来。"有趣的是,研究发现,尽管最重的种子比最轻的种子重10倍,但它们的飞行速度却大致相同。这是因为在种子较大的植物中,果实蒴果也相应较大,使它们能够产生和储存更多的弹性能量。"说到有弹性的东西,我们通常会想到橡皮筋、线圈或弓箭,"豪尔赫说。"但在生物学中,我们有所有这些奇怪、复杂的形状。也许这些形状有一些好处,可以用来改进合成弹簧的设计,比如用于小型跳跃机器人的弹簧。"有关这项研究的论文最近发表在《英国皇家学会界面期刊》(JournaloftheRoyalSocietyInterface)上。...PC版:https://www.cnbeta.com.tw/articles/soft/1379603.htm手机版:https://m.cnbeta.com.tw/view/1379603.htm

封面图片

从小鼠细胞中提取的肌肉组织能移动"生物杂交机器人"

从小鼠细胞中提取的肌肉组织能移动"生物杂交机器人"虽然这些系统具有柔软的外形,但它们的许多部件仍像传统的同类产品一样是刚性的。研究人员正在努力为这些软体机器人引入柔性元件,以创造运动能力。正如麻省理工学院简明扼要地所说,"我们的肌肉是大自然的完美致动器"。不过,该团队的研究并不只是简单地模仿肌肉。该校的研究人员正在使用活体肌肉组织与合成机器人部件结合,制造一种被称为"生物混合"的机器人。麻省理工学院工程学教授里图-拉曼(RituRaman)证实了这一过程,并指出:"我们用小鼠细胞构建肌肉组织,然后把肌肉组织放在机器人的骨架上。然后,这些肌肉就充当了机器人的致动器--每当肌肉收缩时,机器人就会移动。"肌肉纤维连接到一个被称为"挠曲"的"弹簧状"装置上,该装置是系统的一种骨骼结构。生物肌肉组织很难处理,而且通常难以预测。将其放置在培养皿中,肌肉组织会按预期膨胀和收缩,但不是以可控的方式膨胀和收缩。要在机器人系统中使用,它们必须可靠、可预测和可重复。在这种情况下,就需要使用在一个方向上具有顺应性,而在另一个方向上具有抵抗性的结构。拉曼的团队在马丁-卡尔佩珀教授的麻省理工学院制造实验室找到了解决方案。挠性结构仍需根据机器人的规格进行调整,最终选择了刚度为肌肉组织1/100的结构。拉曼指出:"当肌肉收缩时,所有的力都会转化为该方向的运动。这是一种巨大的放大。"拉曼说,这种肌肉纤维/挠性系统可以应用于各种不同尺寸的机器人,但研究小组的重点是制造超小型机器人,以便有朝一日能在体内进行微创手术。...PC版:https://www.cnbeta.com.tw/articles/soft/1426909.htm手机版:https://m.cnbeta.com.tw/view/1426909.htm

封面图片

受蝗虫启发的微型机器人有望成为跳远冠军

受蝗虫启发的微型机器人有望成为跳远冠军跳高机器人采用了一种受叩头虫启发而设计的装置,其中一个微型线圈致动器拉动一个梁状机构。随着致动器被逐渐拧紧,它导致机械装置逐渐弯曲并储存弹性能量。一旦机构达到某个临界点,所有能量就会突然释放并放大,将机器人向上抛出。新型跳远机器人也采用了类似的系统,不过其灵感来自另一种昆虫-蝗虫的后腿。该装置的核心是一个三维打印的弹性四杆连杆,它通过一个盘绕的致动器(后者由热处理尼龙鱼线制成)的扭转获得预载。一旦释放出储存的弹性能量,机器人就会在垂直和水平方向上跳跃,其水平距离远远超过受"叩头虫"启发的前辈们。托菲克及其同事制造并测试了108个这样的机器人,其中最小的仅重0.216克,却能跳跃60倍于其身体长度的距离。希望有一天,这些机器人的后代能够使用电池供电,配备传感器,应用于农作物监测或机械内部检查等领域。"据我所知,这是第一次有人展示昆虫级机器人的长距离跳跃能力,"托菲克说。"这意义重大,因为它赋予了机器人有计划的机动性,现在它可以从A地跳到B地,穿越比它自身大小还要崎岖的地形。"您可以在下面的视频中看到其中一个机器人的行动。有关这项研究的论文最近发表在《智能材料与结构》(SmartMaterialsandStructures)杂志上。相关文章:微型机器人模仿叩头虫可轻易跳过障碍物...PC版:https://www.cnbeta.com.tw/articles/soft/1396953.htm手机版:https://m.cnbeta.com.tw/view/1396953.htm

封面图片

受昆虫启发的机器人瘦得可以穿过缝隙

受昆虫启发的机器人瘦得可以穿过缝隙CLARI是"顺应腿关节机器人昆虫"的首字母缩写,由科罗拉多大学博尔德分校工程学博士生海科-卡布茨(HeikoKabutz)领导的团队创造。他与该大学的副教授考希克-贾亚拉姆(KaushikJayaram)合作,后者曾创造了一种受蟑螂启发的机器人,这种机器人能将自己压扁,以便挤过垂直缝隙。CLARI的四条腿身体大约有一块寿司卷那么大,从上面看大致呈正方形,由机器人柔性外皮连接的四个部分组成。每个部分都有一条腿,并配有独立的电路板和双驱动装置,可前后或左右移动。这意味着每条腿都可以独立运行。在空旷的地面上移动时,CLARI会保持默认的方形,以获得最佳的速度和稳定性。不过,如果遇到太窄的缝隙,无法以这种形状通过,它可以重新配置成更长、更窄的形状。就具体数字而言,机器人方形时宽约34毫米(1.3英寸),窄形时仅宽21毫米(0.8英寸)。虽然当前版本的CLARI是通过硬接线连接到电源和控制源上的,但人们希望它的后代将由电池供电,并配备传感器,使它们能够在复杂的环境中自主前进。科学家们还希望将这些机器人做得更小,但配备更多的腿,以提高机动性。卡布兹说:"当我们试图抓住一只昆虫时,它们可能会消失在缝隙中。但是,如果我们的机器人具有蜘蛛或苍蝇的能力,我们就可以添加摄像头或传感器,现在我们就可以开始探索以前无法进入的空间了。"关于CLARI的论文最近发表在《先进智能系统》杂志上。您可以在以下视频中看到该机器人的实际操作。...PC版:https://www.cnbeta.com.tw/articles/soft/1380917.htm手机版:https://m.cnbeta.com.tw/view/1380917.htm

封面图片

受日本剪纸艺术启发的机器人抓手兼具力量和细腻触感

受日本剪纸艺术启发的机器人抓手兼具力量和细腻触感最近,我们看到了一系列机器人抓手,包括无需电力操作的抓手、从花朵中获得灵感的抓手,或带有木质"手指"的抓手。不过,北卡罗来纳州立大学(NCState)的研究人员可能刚刚开发出了更高级别的机器人抓手。该研究的通讯作者尹杰(JieYin)说:"由于要在强度、精度和轻柔度之间做出权衡,因此很难开发出一种能够处理超软、超薄和超重物体的单一软抓手。我们的设计很好地平衡了这些特性。"为了在各种情况下都能发挥作用,理想的机械手需要能够在需要的地方运用细腻的技巧,同时还能发挥力量和灵巧的特长。为了实现这些目标,研究人员从日本的剪纸艺术--桐纸中汲取了灵感。在与折纸密切相关的叽里纸中,二维纸张被折叠和剪切成三维形状。研究人员发现,受桐纸启发而设计的机械手具有独特的优势。尹杰说:"机器人抓手的强度通常以有效载荷与重量比来衡量。我们的机械手重0.4克,能举起6.4公斤(14.1磅)。有效载荷重量比约为16000。这比之前的有效载荷重量比记录(6400)高出2.5倍。结合其轻柔和精确的特点,该机械手的强度表明其应用范围非常广泛"。据研究人员称,这些特性更多地与机械手的设计有关,而不是由什么材料制成的。研究报告的第一作者洪耀业说:"从实际意义上讲,这意味着你可以用可生物降解的材料制造机械手,比如坚固的植物叶子。这对于那些只想在有限时间内使用机械手的应用尤其有用,比如在处理食品或生物医学材料时。例如,我们已经证明,这种机械手可以用来处理针头等尖锐的医疗废物。"说到应用,在概念验证测试中,研究人员将他们的机械手与肌肉控制(肌电)假手集成在一起,证明它可以翻动书页,从葡萄藤上摘葡萄。这项研究的合著者He(Helen)Huang说:"这种抓手增强了现有假肢装置难以完成的任务的功能,例如拉上某些类型的拉链、捡起一枚硬币等。新的抓手无法取代现有假手的所有功能,但可以用来补充其他功能。叽里咕噜抓手的优点之一是,你不需要更换或增强机器人假肢中使用的现有电机。在使用抓手时,只需利用现有的电机即可。"但研究人员认为,他们的新型抓手可以用于更多领域:"我们认为,这种抓手设计在机器人假肢、食品加工、制药和电子制造等领域都有潜在的应用前景。我们期待着与行业伙伴合作,找到将这项技术投入使用的方法。"这项研究发表在《自然-通讯》(NatureCommunications)杂志上,下面的视频展示了机器人抓手的工作过程。...PC版:https://www.cnbeta.com.tw/articles/soft/1374773.htm手机版:https://m.cnbeta.com.tw/view/1374773.htm

封面图片

受穿山甲启发的微型机器人可以治疗内出血

受穿山甲启发的微型机器人可以治疗内出血在研究员MetinSitti的带领下,该团队设计了一款长2厘米(0.8英寸)、宽1厘米(0.4英寸)的微型机器人,具有重叠的鳞片,可以根据需要移动、滚动和加热。它有一个软质聚合物层,上面镶嵌着磁性颗粒,还有一个硬质顶层,其特点是重叠的铝制“鳞片”。当机器人暴露在低频磁场中时,研究人员可以操纵它卷起并四处移动。当卷起时,该设备可以将药物等颗粒输送到体内的目标部位。然后,当暴露在高频磁场中时,它可以加热到70°C(158°F)以上。在这个温度下,可以用来治疗内出血、清除肿瘤组织和治疗血栓。使不受束缚的机器人设备能够移动和加热的结构图Soon,R等人/(CCBY4.0)虽然这并不是科学家们第一次转向大自然来开发微型机器人,但他们已经开发出了这种受毛毛虫启发的设备和一个以七鳃鳗为模型的设备。但这款机器人的特别之处在于,由硬质元件制成但仍可以自由移动的不受束缚的机器人非常罕见,并且为棘手的内部治疗和手术带来了巨大的希望。在实验室测试中,这种类似穿山甲的装置能够在不损坏软组织的情况下移动,然后通过覆盖出血处并加热来阻止血液流动。该研究发表在《自然通讯》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1366635.htm手机版:https://m.cnbeta.com.tw/view/1366635.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人