欧空局火星探测任务将使用开创性的镅元素核动力源

欧空局火星探测任务将使用开创性的镅元素核动力源欧空局ExoMars火星探测器"罗莎琳德-富兰克林"的艺术家印象图。图片来源:ESA/ATGmedialab利用放射性元素衰变产生的热量的装置,即放射性同位素加热器(RHU)可以让航天器在不依赖太阳能电池板产生的电能来取暖的情况下运行。欧空局历来依靠美国或俄罗斯合作伙伴为任务提供使用钚238的RHU,但自2009年以来,欧空局一直在开展自己的计划,制造放射性同位素加热器以及提供电力的电池。欧洲RHU将加热任务着陆平台上的组件,该平台将漫游车部署到火星表面。在漫游车离开平台并打开太阳能电池板之前,着陆器会为漫游车供电。位于荷兰诺德韦克的欧洲空间研究与技术中心(ESTEC)的欧空局火星探测小组组长奥森-萨瑟兰(OrsonSutherland)说,因此延长着陆器的寿命可以在部署漫游车过程中出现问题时提供备用电源。镅衰变欧空局的加热器装置不仅是欧洲的首创,也是世界上第一个使用镅-241的地方。镅-241是钚衰变的副产品,每克功率低于其前身。但镅-241的数量更多,价格也更便宜,这意味着即使RHU需要更多的同位素才能运行,它们的总体成本也可能更低。"萨瑟兰说:"开发并发射欧洲RHU将是欧空局的首创,也是一项重大成就。罗莎琳德-富兰克林号漫游车拥有独特的装备,可以寻找火星上远古生命的踪迹,其2米长的钻头可以让它在火星表面下钻得很深。但这项任务原定于2018年发射,甚至在与俄罗斯的紧张关系升级之前,就已经因为技术问题和COVID-19大流行而推迟了。欧空局不得不从根本上重新考虑飞行任务,以便在没有俄罗斯航天局参与的情况下进行,俄罗斯航天局本应负责建造着陆器,战争带来的现状导致欧空局只能从头设计的新着陆器,并依靠美国国家航空航天局来填补任务计划中剩余的漏洞。根据协议,NASA将提供在2028年发射ExoMars的能力,并为着陆器提供制动发动机。美国国家航空航天局还将为漫游车提供放射性同位素加热器。未来的电池镅RHU是欧洲利用放射性同位素能源装置(ENDURE)项目的一部分。由于这些装置含有放射性材料,因此需要在发射前进行认证。莱斯特大学(UniversityofLeicester)的物理学家和太空动力系统专家理查德-安布罗西(RichardAmbrosi)说,该合作项目正在努力满足2028年的发射安全要求。ENDURE公司的目标是在本十年结束前开发出能够为航天器提供电力而不仅仅是热量的镅电池,以便在2030年代初及时执行欧空局的一系列月球任务。RHU使用的是放射性衰变自然产生的热量,而核电池(称为放射性同位素热电发电机)则将热量转化为电能。位于英国塞拉菲尔德的国家核实验室将利用英国民用发电厂的乏核燃料制造加热器和电池所需的镅颗粒。萨瑟兰说,欧空局拥有自己的加热装置将使该机构能够扩大其探索范围。他说:"在火山口等阴暗区域或夜间为飞行系统保温的能力将使以前无法进入的区域得以探索,并延长任务的寿命。"...PC版:https://www.cnbeta.com.tw/articles/soft/1432080.htm手机版:https://m.cnbeta.com.tw/view/1432080.htm

相关推荐

封面图片

美国国家航空航天局的新能源:用于遥远太空之旅的钚238

美国国家航空航天局的新能源:用于遥远太空之旅的钚238能源部向洛斯阿拉莫斯国家实验室运送0.5千克钚-238,是为NASA的放射性同位素动力系统生产燃料的一个里程碑,对深空探索至关重要。这一进展是到2026年每年生产1.5千克燃料目标的一部分,为火星2020等任务提供了支持,证明了NASA与能源部之间持续、重要的合作伙伴关系。这批0.5公斤(略高于1磅)的新型热源氧化钚是自十多年前美国境内重启钚238生产以来最大的一批。它标志着到2026年实现平均每年1.5千克恒定生产率目标的一个重要里程碑。放射性同位素动力系统(RPS)使人们能够探索太阳系内外一些最深、最暗、最遥远的目的地。RPS利用放射性同位素钚238的自然衰变,以轻型放射性同位素加热器(LWRHU)的形式为航天器提供热量,或以多任务放射性同位素热电发电机(MMRTG)等系统的形式提供热量和电力。2022年3月17日,NASA"毅力号"火星车在执行任务的第381个火星日(SOL)回望它的车轮轨迹。图片来源:NASA/JPL-Caltech能源部已经为美国宇航局的"火星2020"等任务生产出了为RPS提供燃料所需的热源氧化钚。第一个受益于此次重启的航天器"毅力号"漫游车携带了能源部生产的部分新型钚。MMRTG持续为这辆汽车大小的漫游车提供热量和约110瓦的电力,使其能够探索火星表面并收集土壤样本,以便可能时进行回收。位于克利夫兰的美国国家航空航天局格伦研究中心的放射性同位素动力系统项目经理卡尔-桑迪弗(CarlSandifer)说:"美国国家航空航天局的放射性同位素动力系统项目与能源部合作,使任务能够在太阳系和星际空间中一些最极端的环境中运行。"六十多年来,美国一直在太空中使用基于放射性同位素的电力系统和加热器装置。几十年来,已有三十多次太空探索任务使用了RPS提供的可靠电力和热能。美国国家航空航天局和能源部将继续保持长期的合作伙伴关系,以确保美国能够在未来数十年内完成需要放射性同位素的任务。...PC版:https://www.cnbeta.com.tw/articles/soft/1399121.htm手机版:https://m.cnbeta.com.tw/view/1399121.htm

封面图片

新型放射性同位素加热器使用镅241阻止航天器结冰

新型放射性同位素加热器使用镅241阻止航天器结冰白天问题不大,因为月球表面是真空的,所以用反射面控制加热相对容易。夜间则是另一回事。航天器的热量会迅速辐射出去,当太阳在两周的黑暗后再次升起时,着陆器的电池和电子设备就会损坏,无法挽救。展望未来人类在月球上的永久存在,包括大量的商业活动,ispace公司和莱斯特空间核动力集团希望为未来的任务开发核加热器装置,首先从ispace公司的3系列月球着陆器和漫游车开始。图为RTG原型机这些设备不是核反应堆,而是所谓的辐射热发电机(RTG)。它们的工作原理不是裂变,而是钚等浓缩核同位素的自然放射性衰变。在衰变过程中,它们会放出热量,这些热量可以用来发电,或使航天器在月夜或在外太空系统及更远的深空任务中不被冻住。尽管使用RTG使月球着陆器或漫游车存活的想法已经存在了半个世纪,但ispace/Leicester项目却有些不同。这不仅是一个旨在支持私人月球任务的私人投资项目,它还使用了一种不同的同位素。其他大多数太空任务都使用钚238,而新的加热器将使用镅241。这种同位素不仅成本更低,争议更少,而且半衰期超过400年,可以让漫游车保持多年的温暖。莱斯特大学物理天文学院和莱斯特太空公园的汉娜-萨吉博士说:"莱斯特大学与国家核实验室联合开发的放射性同位素动力技术在我们正在进行的测试活动中表现非常出色。在这个项目中,我们将与ispace合作,研究使用放射性同位素加热器为航天器提供足够热量以度过月夜的可行性。""英国航天局国际双边资助的第一阶段用于与我们的国际合作伙伴合作,以了解他们的电力需求和任务重点。在第二阶段,我们将开展实验室和概念研究,以证明任务概念的可行性。这也将提供一个机会,向民用和商业航天产业强调该技术,并展示如何利用该技术满足优先任务的关键动力需求。"...PC版:https://www.cnbeta.com.tw/articles/soft/1432624.htm手机版:https://m.cnbeta.com.tw/view/1432624.htm

封面图片

有种电池,能让你的手机100年都不断电

有种电池,能让你的手机100年都不断电你是否也在为手机频繁充电而头疼?你是否也为心脏起搏器定期手术更换电池而烦恼?你是否知道深海探测无人潜水器要如何才能更长久地工作?你知道火星车为了延长续航使用了一种特殊的电池吗?作者:中子科学国际研究院监制:中国科普博览2021年,登陆火星的好奇号探测器使用了一台多用途放射性同位素温差同位素电池(MMRTG),这种电池可以很好地解决以上的问题,今天就带你了解这种神奇的电池——同位素电池。一、什么是同位素,同位素能干什么?同位素是指原子核内质子数(原子序数)相同但中子数不同的同一元素。比如我们生活中常见的氢元素有就三种同位素,分别是氕(H)、氘(D,重氢)、氚(T,超重氢),它们之间互为同位素,是同一元素的不同核素。氕、氘、氚原子结构示意图(图片来源:作者手绘)其中有一些元素非常不稳定,能自发地发射粒子或射线,释放一定的能量从而变成另一种元素稳定的原子,这种元素就是放射性同位素。放射性同位素发射射线的过程就是同位素衰变的过程,放射性核素的数目衰变到原有的一半所需的时间就是放射性同位素的半衰期。例如,238Pu的半衰期是87.7年,也就是说,一颗238Pu放射源在放了87.7年后只有一半的钚-238衰变掉了。除了在国防科技中的作用,在我们日常生产生活中,许多同位素也发挥着重要的作用,例如在食品生产中,可以利用同位素60Co产生伽马射线来对食物进行辐照灭菌;在医疗临床方面,已经建立了百余种同位素治疗的方法,可以对一些癌细胞实现靶向辐射进而阻碍其在病人体内继续扩散;在能源领域,利用核反应堆来提供电力。除了上述应用之外,还可以利用238Pu等同位素衰变时的热能制造同位素温差电池以及利用63Ni衰变时释放的辐射粒子来制造辐射伏特效应同位素电池。二、同位素电池长啥样?这里我们着重介绍下应用较为成熟的两种电池:同位素温差电池和辐射伏特效应同位素电池。同位素温差电池(RTG)是利用热电材料的塞贝克效应将同位素的衰变热直接转换成电能的发电装置。RTG由三个部分组成,从内到外分别是同位素热源、热电转换器件、散热外壳。同位素热源发出的热能使热电材料两端产生温差,从而利用热电材料的塞贝克效应产生电流,而特殊材料制成的外壳既可以隔绝辐射,又可以把未被利用的热能释放出去。同位素温差电池典型结构(图片来源:凤麟核团队)辐射伏特效应同位素电池由放射源、半导体换能器件、电极、外壳等结构组成,其工作原理是放射源与半导体材料发生相互作用时,通过电离激发作用产生电子空穴对,然后在半导体内建电场的作用下这些产生的电子空穴对被电极分离收集,进而实现了将放射源的衰变能转换为电能。三、同位素电池可以干什么?同位素电池具有结构紧凑、可靠性高、寿命长(可以连续供能数十年)、不受环境影响、无需维护等共同优势,因此可以在一些需要长期免维护或者环境复杂难以充电的场景,做到一劳永逸,直到退役。同位素...PC版:https://www.cnbeta.com/articles/soft/1309081.htm手机版:https://m.cnbeta.com/view/1309081.htm

封面图片

欧空局"火星快车"走过开创性发现的20年之旅

欧空局"火星快车"走过开创性发现的20年之旅二十年前,即2003年6月2日,ESA的火星快车轨道飞行器发射升空并开始了前往这颗红色星球的旅程——这是欧洲有史以来首次前往火星的任务。图片来源:欧空局尽管火星快车计划中的工作寿命仅为687个地球日,但火星快车现已在太空中运行了20年。它已经实现了上述目标,并揭示了当时有关火星的丰富知识,这无疑使其成为有史以来最成功的火星任务之一。上述信息图突出显示了该任务迄今为止最令人印象深刻的一些数据,从11亿公里绕过24,000多个火星轨道,到170多名博士生接受培训,以及使用火星快车数据发表的1800多篇科学论文。火星快车过去20年的观测巩固了我们对火星作为一个曾经宜居行星的印象,它拥有更温暖、更湿润的时期,可能是古代生命存在的绿洲。与我们之前对地球的看法相比,这是一个巨大的转变,之前的看法将其描述为一个永恒寒冷和干旱的世界。火星快车已经确定并绘制了过去火星上水的迹象——从只有在有水存在的情况下才会形成的矿物质到水蚀山谷、地下水系统和潜伏在地下的池塘——并追溯了它在火星历史上的影响和流行程度。它深入研究了火星大气层,描绘了气体(水、臭氧、甲烷)的分布和逃逸到太空的方式,并观察了尘埃从地表被卷入空气中的过程。该任务见证了巨大的沙尘暴吞没了地球,形成了我们在地球上看到的熟悉的云层,并追踪到了罕见的紫外线极光。轨道飞行器观察到最近和偶发的火山活动和构造的迹象,并探索了这颗行星独特的表面特征,绘制了98.8%的火星地图,并创建了数千张撞击坑、峡谷、地球冰冷的两极的3D图像,巨大的火山等等。它以前所未有的细节研究了火星最深处的卫星火卫一从神秘的卫星近45公里处经过,并观察了火星较小的卫星火卫二穿越太阳系时的情况。除了专注于火星科学,火星快车还支持许多其他任务,因为它们要么寻找合适的着陆点、前往火星、与地球上的地面站通信,要么在火星表面着陆。它的数据继续支持重要的科学研究和发现,包括培训新的和早期的职业研究人员,他们将在未来几十年揭示宇宙的秘密。而任务对火星探索的支持远未结束;火星快车的最新扩展使其能够在2025年到达时支持JAXA领导的火星月球探索(MMX)任务。...PC版:https://www.cnbeta.com.tw/articles/soft/1364413.htm手机版:https://m.cnbeta.com.tw/view/1364413.htm

封面图片

中核集团宣布首次获得公斤级钼同位素

中核集团宣布首次获得公斤级钼同位素据了解,钼(Mo)同位素在核医学、基础物理、先进核燃料等研究领域有着广泛的应用前景。在核医学领域,高丰度钼-98和钼-100同位素是生产放射性同位素钼-99的前置核素,钼-99进一步衰变生成锝-99m,是目前核医学中应用最为广泛的诊断用放射性核素。在基础物理领域,高丰度钼-100同位素应用于无中微子双β衰变实验,该实验研究是当前国际粒子物理与核物理研究的重要前沿课题,对探究中微子基础性质、揭示宇宙演化过程具有重要意义。在先进核燃料研究领域,贫化钼-95因熔点比主流核燃料包壳材料—锆高出760℃,可制造更耐高温的核燃料组件,大幅提升核燃料组件的安全性能,为核电事业安全绿色发展提供保障。为满足国内市场需求,改变钼同位素材料长期依赖进口和供应不足的局面,中核集团科研团队基于近30年持续研发经验,大胆创新。最终突破同位素分离过程中卡脖子关键技术,首次获得了公斤级同位素丰度达到99%的钼-100同位素产品,填补国内该技术领域空白。...PC版:https://www.cnbeta.com.tw/articles/soft/1392413.htm手机版:https://m.cnbeta.com.tw/view/1392413.htm

封面图片

微型核发电机可为深空立方体卫星提供动力

微型核发电机可为深空立方体卫星提供动力这些电池板的工作做得非常好,但在火星轨道以外的深空或恶劣条件下,如火星尘暴或月球上的长夜,太阳光根本无法产生所需的能量。作为一个替代方案,许多深空飞行器携带多任务放射性同位素热发电机(MMRTG),利用温度梯度来发电。换句话说,放射性同位素产生热量,热电偶将热量直接转化为电能。这是一个工程师们熟悉的原理,在地球上被广泛用于诸如煤油动力收音机和营地炉子,也可以为移动设备充电。MMRTG的问题是它们相对笨重。例如,美国宇航局的毅力号火星车上使用的一对火星车,每个直径25英寸(64厘米),长26英寸(66厘米),重量为99磅(45公斤)。它们每个都含有10.6磅(4.8公斤)的二氧化钚作为燃料,在放射性元素衰变时为固态热电偶提供热量。因此,这些MMRTG是为非常大的航天器保留的,"毅力"号就像一辆SUV一样大。这是因为所使用的系统只有这么大的质量比功率,这是衡量一台机器每单位能产生多少瓦特的功率的标准。一辆家用汽车的质量比功率为50至100瓦/公斤,而一架战斗机的质量比功率约为10000瓦/公斤。相比之下,一个MMRTG的比率约为30W/kg。通过研究可能的RTG的尺寸、重量和功率(SWaP)的热力学,NASA项目希望将这一比率降低一个数量级,使其仅为3W/kg,同时体积的减少也同样巨大。它通过使用一种新的原理来做到这一点,这种原理基本上是太阳能电池板的反向工作方式。当太阳能电池板吸收光线时,部分光线被转化为电能,大部分光线被转化为热能。新的放射性同位素电源的工作原理是热辐射电池,其中红外光的形式的热量照射到由铟、砷、锑和磷等元素组成的不同组合的面板。这产生了一个与太阳能电池中的极性相反的电位差。长话短说,热辐射电池从热量中产生电力,并以红外光子的形式倾倒废旧能量。这不仅与太阳能电池板的工作方式相反,而且效率更高。其结果是一种新的热辐射发生器(TRG)。如果这项新技术能够实用化,这将意味着未来前往木星及更远地方的任务,或前往月球极地的永久阴影坑的任务,可以使用立方体卫星大小的航天器,由小型发电机提供它们所需的所有电力。这意味着,例如,天王星旗舰任务的概念可以伴随着一个小型的立方体卫星舰队,通过提供更多的视角或作为与大气层探测器的通信中继来帮助探索。...PC版:https://www.cnbeta.com.tw/articles/soft/1339809.htm手机版:https://m.cnbeta.com.tw/view/1339809.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人