有关稀土元素钷的新发现将改写化学教科书

有关稀土元素钷的新发现将改写化学教科书概念图展示了小瓶中的稀土元素钷,周围环绕着有机配体。ORNL科学家发现了钷的隐藏特征,为研究其他镧系元素开辟了道路。图片来源:JacquelynDeMink,艺术;ThomasDyke,摄影;ORNL,美国能源部钷于1945年在克林顿实验室(即现在的美国能源部橡树岭国家实验室)被发现,并一直在橡树岭国家实验室进行微量生产。尽管稀土元素被用于医学研究和长寿命核电池,但它的一些特性仍然难以捉摸。它以神话中的泰坦命名,泰坦将火传递给人类,其名字象征着人类的奋斗。美国国家实验室的突破性研究共同领导这项研究的ORNL科学家亚历克斯-伊万诺夫(AlexIvanov)说:"整个想法就是探索这种非常罕见的元素,以获得新的知识。意识到这是在这个国家实验室和我们工作的地方发现的,我们就觉得有义务进行这项研究,以维护ORNL的传统"。由ORNL领导的科学家团队制备了一种钷的化学复合物,从而首次在溶液中描述了钷的特性。因此,他们通过一系列细致的实验揭开了这种原子序数为61的极其罕见镧系元素的秘密。这项具有里程碑意义的研究于5月22日发表在《自然》杂志上,标志着稀土研究取得了重大进展,并有可能改写化学教科书。左起:亚历克斯-伊万诺夫(AlexIvanov)、桑塔-扬松-波波娃(SantaJansone-Popova)和伊尔亚-波波夫斯(IljaPopovs),均来自美国国家实验室。图片来源:CarlosJones/ORNL,美国能源部镧系元素的特性共同领导这项研究的ORNL的IljaPopovs说:"由于没有稳定的同位素,钷是最后发现的镧系元素,也是最难研究的镧系元素。大多数稀土元素都是镧系元素,即元素周期表上从57(镧)到71(镥)的元素。它们具有相似的化学性质,但大小不同。"人们对其他14种镧系元素都很了解。它们是具有有用特性的金属,在许多现代技术中不可或缺。它们是激光器、风力涡轮机和电动汽车中的永久磁铁、X射线屏幕甚至抗癌药物等应用的主力军。"数以千计的关于镧系元素化学的出版物中都没有钷。这对所有科学来说都是一个明显的空白,"ORNL的SantaJansone-Popova说,她是这项研究的共同负责人。"科学家们不得不假设钷的大部分特性。现在我们可以实际测量其中的一些特性了。"左起:RichardMayes、FrankieWhite、AprilMiller、MattSilveira和ThomasDyke。图片来源:CarlosJones/ORNL,美国能源部独特的研究能力这项研究依赖于能源部国家实验室的独特资源和专业知识。作者利用研究反应堆、热电池和超级计算机,以及18位科学家在不同领域积累的知识和技能,详细描述了对溶液中钷复合物的首次观测。ORNL的科学家将放射性钷与称为二甘醇酰胺配体的特殊有机分子结合或螯合。然后,他们利用X射线光谱测定了络合物的性质,包括钷与邻近原子的化学键长度--这是科学界的创举,也是元素周期表中长期缺失的部分。钷非常稀有,在任何时候,地壳中自然存在的钷只有一磅左右。与其他稀土元素不同,由于钷没有稳定的同位素,因此只能获得微量的合成钷。在这项研究中,ORNL小组生产了半衰期为2.62年的同位素钷-147,其数量和纯度足以研究其化学特性。ORNL是美国唯一的钷-147生产商。站在ORNL放射化学工程开发中心前的钷研究小组成员,从左至右依次为:SantanuRoy、ThomasDyke、IljaPopovs、RichardMayes、DarrenDriscoll、FrankieWhite、AlexIvanov、AprilMiller、SubhamayPramanik、SantaJansone-Popova、SandraDavern、MattSilveira、ShelleyVanCleve和JeffreyEinkauf。资料来源:CarlosJones/ORNL,美国能源部值得注意的是,研究小组首次展示了整个镧系元素在溶液中的镧系收缩特征,包括原子序数为61的钷。镧系元素收缩是指原子序数在57到71之间的元素比预期的要小。随着这些镧系元素原子序数的增加,其离子半径也随之减小。这种收缩产生了独特的化学和电子特性,因为相同的电荷被限制在一个不断缩小的空间内。ORNL的科学家们得到了一个清晰的钷信号,这使他们能够更好地确定整个系列的趋势形状。伊万诺夫说:"从科学的角度来看,这确实令人震惊。当我们获得所有数据后,我感到非常震惊。这种化学键的收缩在原子序列中是加速的,但在钷之后,这种收缩就大大减慢了。这是了解这些元素的化学键特性及其在元素周期表中的结构变化的一个重要里程碑。"其中许多元素,如镧系元素和锕系元素的应用范围很广,从癌症诊断和治疗到可再生能源技术和用于深空探测的长寿命核电池。对技术和科学的影响扬松-波波娃表示,这一成果将减轻分离这些宝贵元素的工作难度。长期以来,研究小组一直致力于全系列镧系元素的分离,"但钷是最后一块拼图。这相当具有挑战性,"她说。"现代先进技术无法将所有这些镧系元素作为混合物使用,因为首先需要将它们分离。这就是收缩变得非常重要的地方;它基本上使我们能够分离它们,而这仍然是一项相当困难的任务。"研究小组在该项目中使用了能源部的多个主要设施。在ORNL,钷在高通量同位素反应堆(能源部科学办公室的用户设施)合成,并在放射化学工程开发中心(多用途放射化学处理和研究设施)纯化。然后,研究小组在位于能源部布鲁克海文国家实验室的能源部科学办公室用户设施--国家同步辐射光源II进行了X射线吸收光谱分析,特别是在由美国国家标准与技术研究院资助和运营的材料测量光束线工作。研究小组还在橡树岭领先计算设施(OakRidgeLeadershipComputingFacility)进行了量子化学计算和分子动力学模拟,该设施是能源部科学办公室在ORNL的用户设施,使用的是实验室的Summit超级计算机,这是当时唯一能够提供必要计算的计算资源。此外,研究人员还使用了ORNL科学计算和数据环境的资源。他们预计未来的计算将在ORNL的Frontier超级计算机上进行,这是世界上最强大的超级计算机,也是第一个超大规模系统,每秒能进行超过五万亿次计算。波波夫斯强调说,ORNL领导取得的成就归功于团队合作。他说,《自然》杂志论文的18位作者中的每一位都对项目至关重要。科学家们说,这项成果为研究的新时代奠定了基础。波波夫斯说:"任何我们称之为现代技术奇迹的东西,都会或多或少地包含这些稀土元素。我们正在添加缺失的环节。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1432197.htm手机版:https://m.cnbeta.com.tw/view/1432197.htm

相关推荐

封面图片

科学家开发出创新方法分离对清洁能源技术至关重要的镧系元素

科学家开发出创新方法分离对清洁能源技术至关重要的镧系元素水溶性和油溶性有机分子能有效分离元素周期表中的镧系元素。资料来源:橡树岭国家实验室镧系元素与清洁能源被称为镧系元素的金属具有宝贵的特性,可用于电动汽车和风力涡轮机等清洁能源技术以及许多其他应用。这些元素包括几种关键材料。在自然界中,镧系元素经常混合在一起。工业界必须将它们分离出来,以利用它们各自的特性。但传统的分离方法耗时长、成本高,而且会产生废弃物。现在,科学家们已经开发出一种高效的新方法,可以根据具体情况选择特定的镧系元素。该技术结合了两种物质。一种物质喜水,可捕捉较轻的镧系元素;另一种物质喜油,可捕捉较重的镧系元素。分离技术的创新将一种亲油化合物和一种亲水化合物混合在一起,从化学混合物中提取特定的有价值元素,这在工业规模上是可行的。扩大规模后,该工艺可以使用更小的设备、更少的化学品和更少的废物。这将使新工艺比传统方法更高效、更环保。稀土材料加工取得突破为清洁能源技术制造纯稀土材料--14种镧系元素以及钇和钪--最具挑战性和最昂贵的方面是将单个稀土元素相互分离。橡树岭国家实验室的科学家将两种有机物结合在一起:一种亲水,另一种亲油。这些有机物对不同的稀土元素有偏好。例如,一种与较轻的稀土元素相互作用强烈,而另一种则偏爱较重的稀土元素。科学家们用两种不同的液体--油和水--来测试这种技术。在水中,他们溶解了亲水性物质;在油中,他们加入了亲油性物质。他们发现,与之前使用的单物质方法相比,双物质方法有助于分离最轻和最重的稀土元素。他们使用各种方法研究这些有机化学物质和稀土元素如何相互作用。研究结果提供了有关该过程如何工作的宝贵信息,以及有关如何进一步改进分离系统的真知灼见。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1426802.htm手机版:https://m.cnbeta.com.tw/view/1426802.htm

封面图片

科学简单点:什么是“关键材料” 美国政府定义了多少种?

科学简单点:什么是“关键材料”美国政府定义了多少种?镓,美国政府认定的关键材料之一,因为它在许多重要技术中都有应用。图片来源:MaximBilovitskiy,CCBY-SA4.0,viaWikimediaCommons.许多关键材料具有独特的性能,因此对先进技术非常重要。例如,有些材料可用于制造非常坚固、紧凑的磁铁,有些材料可加速化学反应,还有一些材料可有效地将电能转化为光能。能源部确定的所有关键材料都是天然元素,没有一种是在实验室中创造出来的。几乎所有这些元素都来自恒星和超新星,只有极少量是通过放射性衰变和其他方式产生的。这意味着地球上的供应就是我们目前所拥有的一切。上图中的镓就是这些关键材料之一。镓用于制造各种电子设备。它常用于LED灯泡、智能手机中的通信芯片和高效电源。由于镓十分稀有,因此并不直接开采,而是作为铝制造过程中的副产品生产出来。中国的镓产量占全球产量的90%以上,并于2023年宣布严格限制这一关键元素的出口。概况我们可以通过英国皇家化学会的在线元素周期表,了解更多有关关键材料和所有元素的信息。这些关键材料包括17种稀土金属中除一种之外的所有材料。这些银色金属的化学性质相似。它们之所以被称为"稀有",部分原因是它们往往同时存在,很难从其他材料中分离出来。由能源部科学办公室支持的研究项目可以降低关键材料的回收成本。欧盟也关注关键材料。在这份来自Politico的指南中,您可以了解有关其中12种材料的更多信息。从太阳能电池板和风力涡轮机到电动汽车充电器和电池,关键材料对清洁能源技术至关重要。这些用途正是能源部密切关注关键材料的原因。根据《两党基础设施法和通货膨胀削减法》,能源部负责监督几项关键计划,以解决关键材料问题。能源部制造和能源供应链办公室(MESC)正在三个资助领域领导工作,即电池制造和回收补助金、电池材料加工补助金和48C税收抵免计划。MESC和能源部化石能源与碳管理办公室(FECM)正在领导稀土元素示范设施的工作。化石能源和碳管理办公室还在利用采矿和工业废料以及其他非常规来源生产和加工稀土元素和其他关键材料。能源部还创建了关键材料创新中心(CMIHub)。该中心由艾姆斯国家实验室领导,由能源部先进材料与制造技术办公室管理。CMI正在开展应用研究,以推动技术发展,从而开辟关键材料的新来源、这些材料的替代品以及通过再利用和再循环更好地利用现有材料的方法。该中心还研究新的方法,以促进科学发展、保护环境,并分析关键材料的供应链和经济性。更多有关“关键材料”资源能源部关键矿物和材料计划,包括该计划对这些材料的定义能源部科学办公室的基础能源科学计划,是能源部在关键材料方面的大部分工作的中心。为关键材料奠定科学基础关键材料创新中心能源部关键材料中心DOE关键材料战略报告DOE关于从煤炭和煤炭副产品中回收REE/CM的报告美国地质调查局关于关键材料的报告相关文章:科学简单点:什么是超级计算?科学简单点:什么是人工智能?科学简单点:什么是量子力学?科学简单点:什么是水力发电?科学简单点:什么是核能?科学简单点:什么是气候复原力?科学简单点:什么是纳米科学?科学简单点:什么是暗物质和暗能量?科学简单点:什么是X射线光源?科学简单点:什么是自主发现?科学简单点:什么是氢能源?...PC版:https://www.cnbeta.com.tw/articles/soft/1426468.htm手机版:https://m.cnbeta.com.tw/view/1426468.htm

封面图片

稀土元素如何形成?科学家们创造了合成的人工岩石来寻找答案

稀土元素如何形成?科学家们创造了合成的人工岩石来寻找答案都柏林三一学院的研究人员对日益珍贵的稀土元素(REEs)的形成有了新的认识。他们通过创造合成岩石并测试其对不同环境条件的反应来实现这一目标。稀土元素被用于许多电子设备和绿色能源技术,包括从智能手机到电动汽车的一切。PC版:https://www.cnbeta.com/articles/soft/1319523.htm手机版:https://m.cnbeta.com/view/1319523.htm

封面图片

铜化学的新发现有望大大降低药物生产成本

铜化学的新发现有望大大降低药物生产成本利用臭氧(一种氧气)作为试剂和金属作为催化剂,科学家们能够破坏不同类型有机分子的碳-碳键。臭氧将碳碳键断裂成碳氢化合物(称为烯),铜催化剂将断裂的碳碳键与氮结合,形成碳氮键或称为胺的分子。这一过程被称为氨基去烯烃化,它的意义在于充分利用了一种大量存在的廉价金属,而不是传统上用于开发胺的其他类似催化剂。有机化学教授OhyunKwon说:"这在以前从未有过。传统的金属催化使用昂贵的金属,如铂、银、金和钯,以及其他贵金属,如铑、钌和铱。但我们使用的是氧和铜,这是世界上最丰富的贱金属之一。"胺与动植物体内的分子有很强的相互作用,因此被大量用于生产药品和化肥等农用化学品。而且,正如它们的名字所示,苯丙胺和多巴胺也是胺类物质。通过这种多功能组合,研究小组能够将激素、药物试剂、肽和核苷改性为胺,这表明这种新方法具有广泛的应用前景。不过,对Kwon来说,它最大的亮点可能是可以生产出更便宜的药物。某些抗癌药物中使用的化学物质每克需要花费制药公司3200美元,而研究人员使用每克生产成本约为3美元的化学物质就能生产出相同的药物分子。研究小组只用了三个化学步骤就生产出了这种抗癌c-JunN端激酶抑制剂,而目前通常需要十几个步骤。在另一项实验中,该方法只需一步就能将腺苷(一种神经递质和DNA构建模块,每克成本不到10美分)转化为N6-甲基腺苷胺。这种胺在控制细胞基因表达、疾病过程和发育方面发挥着重要作用。目前,它的生产成本约为每克103美元。由于目前铜资源丰富,而且每磅价格不到4美元,科学家们希望这项新方案能为各种胺类药物和其他有机材料开辟一个更实惠的市场。这项研究发表在《科学》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1399323.htm手机版:https://m.cnbeta.com.tw/view/1399323.htm

封面图片

剑桥大学研究人员的新发现可能改变电化学设备的未来

剑桥大学研究人员的新发现可能改变电化学设备的未来艺术家绘制的水中电子聚合物图--同时传导离子电荷和电子电荷。资料来源:ScottT.Keene在快速发展的生物电子学领域,被称为共轭聚合物的软导电材料被用于开发可在传统临床环境之外使用的医疗设备。例如,这类材料可用于制造远程监测病人健康状况的可穿戴传感器,或积极治疗疾病的植入式设备。在这类设备中使用共轭聚合物电极的最大好处是,它们能够将负责大脑和身体电信号的离子与电子(电子设备中的电信号载体)无缝耦合。这种协同作用改善了大脑与医疗设备之间的连接,有效地转换了这两种信号。在发表于《自然-材料》(NatureMaterials)上的这项有关共轭聚合物电极的最新研究中,研究人员报告了一项意想不到的发现。人们通常认为,离子的运动是充电过程中最慢的部分,因为离子比电子重。然而,这项研究发现,在共轭聚合物电极中,"空穴"(供电子移动的空隙)的移动可能是材料充电速度的限制因素。研究人员使用专门的显微镜对充电过程进行了实时密切观察,发现当充电水平较低时,空穴的移动效率很低,导致充电过程比预期的慢得多。换句话说,与标准知识相反,在这种特殊材料中,离子的传导速度比电子快。这一意外发现为我们深入了解影响充电速度的因素提供了宝贵的线索。令人兴奋的是,研究小组还确定,通过操纵材料的微观结构,可以调节充电过程中空穴移动的速度。这种新发现的控制和微调材料结构的能力可以让科学家们设计出性能更好的共轭聚合物,从而实现更快、更高效的充电过程。第一作者、剑桥大学卡文迪什实验室和电气工程部的斯科特-基恩(ScottKeene)说:"我们的发现挑战了人们对电化学设备充电过程的传统认识。在低水平充电过程中,作为电子移动空隙的空穴的移动效率会出奇地低,从而导致意想不到的减速"。这些发现影响深远,为未来生物电子学、能量存储和类脑计算等应用领域的电化学设备研发提供了一条大有可为的途径。这项研究的资深作者、工程系电子工程分部菲利普亲王技术教授GeorgeMalliaras说:"这项工作阐明了共轭聚合物电化学掺杂过程中发生的基本步骤,并强调了聚合物带状结构的作用,从而解决了有机电子学中一个长期存在的问题。""随着对充电过程有了更深入的了解,我们现在可以探索创造能与人体无缝结合的尖端医疗设备、提供实时健康监测的可穿戴技术以及效率更高的新型能源存储解决方案的新可能性,"共同第一作者、剑桥大学卡文迪什实验室的AkshayRao教授总结道。...PC版:https://www.cnbeta.com.tw/articles/soft/1379111.htm手机版:https://m.cnbeta.com.tw/view/1379111.htm

封面图片

新发现改写“从鱼到人”的进化故事

新发现改写“从鱼到人”的进化故事来自中国科学院古脊椎动物与古人类研究所(IVPP)的研究人员最近在贵州西南和重庆的早志留纪地层中发现了两个化石库,这些化石库正在改写“从鱼到人”的进化故事。描述他们的发现的四篇不同的论文最近发表在《自然》杂志上。PC版:https://www.cnbeta.com/articles/soft/1331011.htm手机版:https://m.cnbeta.com/view/1331011.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人