罗曼太空望远镜的日冕仪将有助于增加天文学研究中直接成像的遥远行星的种类

罗曼太空望远镜的日冕仪将有助于增加天文学研究中直接成像的遥远行星的种类罗曼号任务的日冕仪旨在展示日益先进的技术的威力。当它直接捕捉来自大型气态系外行星以及其他恒星周围的尘埃和气体盘的光线时,它将为未来指明方向:与地球大小相当的岩质行星的单像素"图像"。然后,光线可以扩散成彩虹光谱,揭示行星大气中存在的气体--可能是氧气、甲烷、二氧化碳,甚至可能是生命迹象。资料来源:美国国家航空航天局戈达德太空飞行中心该技术演示最近从美国国家航空航天局位于南加州的喷气推进实验室(JPL)运往该局位于马里兰州格林贝尔特的戈达德太空飞行中心,在那里与太空观测站的其他部分一起准备于2027年5月发射。在进行跨国旅行之前,罗曼日冕仪对其阻挡星光的能力进行了最全面的测试--工程师称之为"挖暗洞"。在太空中,这一过程将使天文学家能够直接观测其他恒星周围行星或系外行星的光线。一旦在"罗曼号"上得到验证,未来任务中的类似技术就能让天文学家利用这些光线来识别系外行星大气中的化学物质,包括那些可能预示着生命存在的化学物质。美国宇航局南希-格蕾丝-罗曼太空望远镜上的罗曼日冕仪将提高科学家直接为其他恒星周围的行星成像的能力。作为有史以来在太空中飞行的最强大的日冕仪,它将展示未来任务可能使用的新技术,如美国宇航局提议的宜居世界观测站。资料来源:NASA/JPL-Caltech/GSFC在暗洞测试中,研究小组将日冕仪放置在一个密封舱中,以模拟太空中寒冷、黑暗的真空环境。他们利用激光和特殊光学仪器,复制了一颗恒星发出的光,就像罗马望远镜观测到的那样。当光线到达日冕仪时,仪器会使用被称为遮罩的小圆形遮挡物来有效遮挡恒星,就像汽车遮阳板遮挡太阳或日全食时月亮遮挡太阳一样。这使得恒星附近较暗的物体更容易被看到。带面罩的日冕仪已经在太空中飞行,但它们无法探测到类似地球的系外行星。从另一个恒星系统中看,我们的母星会比太阳暗大约100亿倍,而且两者距离相对较近。因此,试图直接拍摄地球的图像,就好比试图从3000英里(约5000公里)外看到灯塔旁的一粒生物发光藻类。使用以前的日冕仪技术,即使是遮蔽恒星的眩光也会淹没类地行星。5月17日,在JPL,RomanCoronagraph仪器小组的成员用起重机吊起了仪器存放的运输集装箱的上半部分,以便运往NASA的戈达德太空飞行中心。图片来源:NASA/JPL-Caltech罗曼日冕仪将展示一些技术,这些技术通过使用几个可移动部件,能够比以往的空间日冕仪去除更多不必要的星光。这些活动部件将使它成为第一个在太空中飞行的"主动"日冕仪。它的主要工具是两面可变形的镜子,每面镜子的直径只有2英寸(5厘米),由2000多个可上下移动的微小活塞支撑。这些活塞共同作用,改变可变形反射镜的形状,从而对罩边缘溢出的不需要的杂散光进行补偿。罗曼日冕仪是如何工作的?这段视频展示了它如何去除多余的星光,以揭示其他恒星周围的行星。资料来源:美国宇航局戈达德太空飞行中心可变形反射镜还有助于修正罗曼望远镜其他光学系统的缺陷。虽然这些缺陷很小,不会影响罗曼望远镜的其他高精度测量,但它们会将杂散的星光送入暗洞。对每个可变形镜片的形状进行肉眼无法察觉的精确改变,可以弥补这些缺陷。JPL罗曼日冕仪项目副经理赵峰说:"瑕疵非常小,影响也很小,我们不得不进行100多次迭代,才能把它做对。这有点像你去看验光师,他们会给你戴上不同的镜片,然后问你'这个更好吗?这个怎么样?'而日冕仪的表现比我们预想的还要好"。在测试过程中,日冕仪相机的读数显示,中心恒星周围有一个甜甜圈状的区域,随着研究小组将更多的星光引离中心恒星,这个区域会慢慢变暗,因此被称为"挖黑洞"。在太空中,当仪器利用其可变形的镜子工作时,潜伏在这个黑暗区域的系外行星就会慢慢显现出来。这幅图显示的是对罗曼日冕仪的测试,工程师称之为"挖黑洞"。左图是只使用固定部件时星光漏入视场的情况。中间和右边的图像显示,当仪器的可移动部件工作时,更多的星光被移走。图片来源:NASA/JPL-Caltech在过去的30年里,天文学家已经发现并确认了5000多颗围绕其他恒星的行星,但大多数都是间接探测到的,这意味着它们的存在是根据它们如何影响母恒星来推断的。探测母恒星的这些相对变化要比看到暗得多的行星信号容易得多。事实上,只有不到70颗系外行星被直接成像。迄今为止已经直接成像的行星都不像地球:它们大多更大、更热,通常离恒星更远。这些特点使它们更容易被探测到,但也不那么适合我们所知的生命。为了寻找潜在的宜居世界,科学家们需要对行星进行成像,这些行星不仅比恒星暗数十亿倍,而且要以适当的距离围绕恒星运行,这样行星表面才能存在液态水--这是地球上发现的生命的前身。要开发直接拍摄类地行星图像的能力,还需要像罗曼摄谱仪这样的中间步骤。它的最大能力可以为太阳这样的恒星周围的一颗类似木星的系外行星成像:这是一颗大而冷的行星,位于恒星宜居带之外。5月17日,JPL的团队成员在将仪器运往NASA戈达德太空飞行中心的集装箱外面的一面旗帜(上面有任务标志)上签下了自己的名字,以此向RomanCoronagraph仪器道别。图片来源:NASA/JPL-Caltech美国国家航空航天局(NASA)从罗曼日冕仪中学到的知识将有助于为未来的飞行任务开辟一条道路,这些飞行任务旨在直接为在类太阳恒星的宜居带中运行的地球大小的行星成像。关于未来望远镜的构想被称为"宜居世界天文台"(HabitableWorldsObservatory),其目标是利用一台仪器对至少25颗与地球类似的行星进行成像,这台仪器将以罗曼摄谱仪在太空中的演示为基础。JPL的伊利亚-波贝雷茨基(IlyaPoberezhskiy)是罗曼日冕仪的项目系统工程师,他说:"要想实现宜居世界天文台这样的任务目标,像可变形反射镜这样的主动组件是必不可少的。罗曼日冕仪的主动性让你可以把普通光学系统提升到一个不同的层次。它使整个系统变得更加复杂,但如果没有它,我们就无法完成这些不可思议的事情。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1432415.htm手机版:https://m.cnbeta.com.tw/view/1432415.htm

相关推荐

封面图片

目前所知道的关于NASA南希·格雷斯·罗曼太空望远镜的一切

目前所知道的关于NASA南希·格雷斯·罗曼太空望远镜的一切美国宇航局(NASA)有许多太空望远镜在运行,从用于各种项目的著名大望远镜,如哈勃和詹姆斯-韦伯太空望远镜,到不太为人所知的如NuSTAR,它观察X射线波长;或Swift,它调查伽玛射线爆发。但是不久之后,随着计划于2027年发射的南希·格雷斯·罗曼太空望远镜,它们将被另一个大型太空望远镜加入。罗曼望远镜将从事各种项目,如寻找新的系外行星和了解暗能量。该望远镜是以“哈勃太空望远镜之母”南希·格雷斯·罗曼的名字命名的,她为哈勃太空望远镜的研究配备了数十年的工作。罗曼望远镜将有一个直径为2.4米的主镜,与哈勃的大小相同。但是它的仪器将观察到更广泛的视野,包括一个比哈勃的红外仪器大100倍的视野。这将使该望远镜能够一次观察大块的天空。该望远镜将配备两台仪器,即广域仪器和日冕仪。广域仪器将是主要的照相机,通过可见光光谱和近红外线来摄取光线。日冕仪有一个系统,用于遮挡非常明亮的光源,如恒星,以便可以更清楚地看到附近较暗的天体,如遮挡主星的光线,以观察围绕它的行星。罗曼望远镜要研究的主要内容之一是系外行星。我们太阳系以外的行星。虽然我们已经发现了数量惊人的系外行星--到目前为止超过5000颗--但这只是银河系中所有行星的一小部分而已。罗曼的目标之一是对银河系中到底有多少颗系外行星做出估计,以及那些确实有行星的系统是否以某种方式分布。在这个项目中,罗曼望远镜将被用于一项名为罗曼银河系外行星调查(RGES)的调查,以获得整个银河系行星系统的总体情况。罗曼望远镜有一个特殊的方式,它将寻找系外行星。目前,许多由美国宇航局的凌日系外行星调查卫星(TESS)等望远镜探测到的系外行星都是使用一种叫做凌日法的方法发现的。这是指望远镜对准一颗恒星,观察其亮度随时间的变化。如果一颗行星从恒星前面经过,在它和望远镜之间,恒星的亮度就会下降一小步。这就是研究人员能够识别系外行星的原因。罗曼望远镜也将使用凌日法,以及直接对一些系外行星进行成像。但是它主要使用一种叫做微透镜的技术,它利用了重力导致时空弯曲的方式。如果一颗恒星从另一颗恒星前面经过,前面那颗恒星的引力会使后面那颗恒星的光线发生扭曲,如果前景恒星周围有行星,那么也能被探测到。这种方法非常适合寻找地球质量或更小的行星,甚至可能探测到大的卫星。PC版:https://www.cnbeta.com/articles/soft/1311897.htm手机版:https://m.cnbeta.com/view/1311897.htm

封面图片

NASA新一代系外行星成像技术推进了地外生命的搜寻工作

NASA新一代系外行星成像技术推进了地外生命的搜寻工作该仪器由位于南加州的喷气推进实验室设计和制造,最近通过了发射前的一系列关键测试。其中包括确保仪器的电子元件不会干扰天文台其他部分的电子元件,反之亦然。JPL罗曼摄谱仪项目副经理赵峰说:"这是建造航天器仪器的一个重要阶段,也是一个令人紧张的阶段,要测试一切是否都能按预期运行。但我们有一个了不起的团队,他们建造了这个东西,它以优异的成绩通过了电气元件测试。"日冕仪可以阻挡来自恒星等明亮宇宙天体的光线,这样科学家就可以观测到被强光遮挡的附近天体(类似于汽车遮阳板带来的效果)。行星反射或发射的光线携带着有关行星大气中化学物质的信息以及其他潜在的宜居迹象,因此日冕仪很可能成为寻找太阳系外生命的重要工具。JPL科学家凡妮莎-贝利(VanessaBailey)站在南希-格蕾丝-罗曼日冕仪(NancyGraceRomanCoronagraph)后面,该日冕仪正在JPL进行测试。冕仪的大小与一架婴儿三角钢琴差不多,其设计目的是阻挡星光,让科学家能够看到太阳系外行星发出的微弱光线。图片来源:NASA/JPL-Caltech但是,如果科学家们试图获取另一个太阳系(大小相同,距离与太阳类似的恒星的距离相同)中一颗类地行星的图像,即使使用当今最好的日冕仪和最强大的望远镜,他们也无法在恒星的强光下看到这颗行星。罗曼日冕仪旨在改变这种模式。该仪器的创新之处在于可以观测到在大小和与恒星的距离上与木星相似的行星。罗曼日冕仪团队预计,这些进步将有助于在未来的天文台上观测到更多的类地行星。作为一项技术演示,罗曼日冕仪的主要目标是测试以前从未在太空中飞行过的技术。具体来说,它将测试比现有技术至少好10倍的复杂光阻断能力。科学家们希望能进一步提高它的性能,以观测可能产生新科学发现的挑战性目标。对RomanCoronagraph进行无线电波攻击测试以测试其对杂散电信号的反应。测试是在一个内衬有泡沫衬垫的室内进行的,泡沫衬垫可以吸收电波,防止电波从墙壁上反弹。资料来源:NASA/JPL-Caltech即使在日冕仪阻挡恒星光线的情况下,行星仍然会非常暗淡,可能需要整整一个月的观测才能获得遥远世界的清晰图像。为了进行这些观测,该仪器的照相机检测单个光子或单个光粒子,这使得它比以前的日冕仪灵敏得多。这就是最近的测试至关重要的原因之一:向航天器部件供电的电流会产生微弱的电信号,模仿日冕仪敏感相机中的光线--这种效应被称为电磁干扰。与此同时,来自日冕仪的信号同样会干扰罗曼号的其他仪器。任务需要确保望远镜在距离地球100万英里(约150万公里)的隔离、电磁安静的环境中运行时,这两种情况都不会发生。因此,一组工程师将完全组装好的仪器放入JPL的一个特殊隔离电磁静音室中,并将其开足马力。他们测量了仪器的电磁输出,以确保其低于在罗曼号上运行所需的水平。研究小组使用注入钳、变压器和天线来产生电干扰和无线电波,这些干扰和无线电波与望远镜其他部分产生的干扰和无线电波类似。然后,他们测量了仪器的性能,寻找相机图像中是否存在过大的噪音,以及光学装置是否有其他不必要的反应。"我们用天线产生的电场强度与电脑屏幕产生的电场强度差不多,"JPL的罗曼-日冕仪电气系统工程师克莱门特-盖顿(ClementGaidon)说。JPL的罗曼-日冕仪电气系统工程师克莱门特-盖顿(ClementGaidon)说:"从各方面考虑,这都是一个很好的水平,但我们机载的硬件非常敏感。总的来说,仪器在电磁波中的导航工作非常出色。感谢团队在创纪录的时间内完成了这次测试活动!"从日冕仪技术演示中学到的经验将与罗曼太空望远镜的主要任务分开,后者包括多个科学目标。这项任务的主要工具是宽视场仪器,其目的是生成一些有史以来从太空拍摄的最大的宇宙图像。这些图像将使罗曼望远镜能够对恒星、行星和星系等宇宙天体进行开创性的观测,并研究宇宙中物质的大尺度分布。例如,通过反复拍摄银河系中心的图像--就像拍摄一部历时多年的延时电影--宽视场仪器将发现数以万计的新系外行星。(这种行星调查将与日冕仪的观测分开)。罗曼还将绘制宇宙三维地图,探索星系是如何形成的,以及宇宙膨胀加速的原因,测量天文学家所说的"暗物质"和"暗能量"的影响。凭借这些广泛的能力,罗曼将帮助回答有关我们宇宙大小特征的问题。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1419481.htm手机版:https://m.cnbeta.com.tw/view/1419481.htm

封面图片

韦伯望远镜首次直接拍摄到系外行星的图像

韦伯望远镜首次直接拍摄到系外行星的图像韦伯太空望远镜首次直接拍摄到一颗系外行星的图像。这颗被命名为HIP65426b的系外行星是一颗不宜居住的气态巨行星。它的质量是木星的6到12倍,年龄在1500万年到2000万年之间。天文学家2017年利用欧洲南方天文台在智利的甚大望远镜发现了这颗行星。韦伯望远镜如今拍摄到这颗行星的更多细节。由于地球大气散发的红外辐射干扰,这些细节无法从地面拍摄到。拍摄HIP65426b直接图像的挑战之处在于,它比所环绕的恒星暗得多,在近红外波段辐射亮度不足所环绕的恒星的万分之一,在中红外波段辐射亮度不足千分之一。望远镜的近红外相机(NIRCam)和中红外仪器(MIRI)均配备了日冕仪。这种设备可以遮挡恒星光芒,使望远镜得以拍摄到行星。这张图像显示了系外行星HIP65426b在不同的红外波段,如詹姆斯·韦伯太空望远镜所见:紫色显示NIRCam仪器在3.00微米处的视图,蓝色显示NIRCam仪器4.44微米处的视图,黄色显示MIRI仪器11.4微米处的视图,红色显示了MIRI仪器15.5微米处的MIRI仪器视图。由于不同的韦伯仪器捕获光的方式,这些图像看起来不同。每台仪器中都有一组被称为日冕仪的遮罩,它可以挡住主星的光,以便可以看到这颗行星。每张图像中的小白星标记了主恒星HIP65426的位置,该位置已通过日冕图和图像处理减去。NIRCam图像中的条形是望远镜光学系统的伪影,而不是场景中的物体。来源:来自:雷锋频道:@kejiqu群组:@kejiquchat投稿:@kejiqubot

封面图片

韦伯望远镜在遥远行星上意外发现二氧化硫雾气的存在

韦伯望远镜在遥远行星上意外发现二氧化硫雾气的存在在气态系外行星GJ3470b上发现的充满硫磺的大气层(如图所示,围绕其位于巨蟹座的恒星运行)可以帮助研究人员弄清它(以及类似行星)是如何形成的。图片来源:威斯康星大学麦迪逊分校天文学家是在2012年发现这颗名为GJ3470b的行星的,当时这颗行星的影子穿过了它所环绕的恒星。GJ3470b位于巨蟹座,大小约为海王星的一半,质量是地球的10倍。在这期间的几年里,研究人员利用哈勃和斯皮策太空望远镜收集了关于这颗行星的数据,并在最近利用詹姆斯-韦伯太空望远镜进行的一对观测中达到了顶峰。太阳系外的行星(系外行星)如GJ3470b是研究人员想知道行星是如何产生的有趣课题。理想情况下,天文学家会捕捉到恒星发出的光线,这些光线会穿过行星大气层的边缘。这样,他们就可以对光的成分或光谱进行测量,读出大气层中有趣的分子所特有的尖峰和凹点。托马斯-比蒂是威斯康星大学麦迪逊分校天文学助理教授。资料来源:威斯康星大学麦迪逊分校二氧化硫罕见的发现威斯康星大学麦迪逊分校天文学教授托马斯-比蒂说:"问题是,每个人在观察这些行星时,通常都会看到平直的线条。但是当我们观察这颗行星时,我们真的没有看到一条平线。"他们看到了水、二氧化碳、甲烷和二氧化硫的证据,比蒂今天在麦迪逊举行的美国天文学会第244次会议上介绍了这些发现,他不久将与来自亚利桑那州立大学、亚利桑那大学、美国国家航空航天局艾姆斯研究中心和其他组织的合著者一起在《天体物理学期刊通讯》上发表这些发现。GJ3470b是最轻、最冷(平均温度仅为325摄氏度,即华氏600多度)、含有二氧化硫的系外行星。当来自附近恒星的辐射将硫化氢的成分炸得四分五裂时,硫化氢就会开始寻找新的分子伙伴。比蒂说:"我们没想到会在这么小的行星上看到二氧化硫,在我们意想不到的地方看到这种新分子令人兴奋,因为它为我们提供了一种新的方法来弄清这些行星是如何形成的,小行星尤其有趣,因为它们的组成确实取决于行星形成过程的发生方式。"比蒂在加入华大麦迪逊分校教师队伍之前曾担任詹姆斯-韦伯太空望远镜的仪器科学家。行星形成过程了解这一过程是比蒂研究的重点之一。这就有点像偷窥面包师傅,只在他们开始工作的时候偷窥,快到吃甜点的时候再偷窥。他说:"在我们的桌子上,摆放着制作蛋糕的所有原料,以及蛋糕成品。现在,我们能否通过测量蛋糕中的成分,找出配方,即把原材料变成最终产品的步骤呢?"像比蒂这样的天文学家希望他们能够做到这一点:通过观察系外行星中的成分,找出行星形成的秘诀。在像GJ3470b这样小的行星中发现二氧化硫,让我们在行星形成成分表上又多了一项重要内容。独特的轨道和迁徙历史在GJ3470b的情况中,还有其他一些有趣的特征,可能有助于完善这一配方。这颗行星围绕恒星运行的轨道几乎越过了恒星的两极,也就是说,它的运行轨迹与系统中行星的预期运行轨迹成90度角。它离恒星的距离也出奇地近,近到恒星发出的光将GJ3470b的大量大气层吹向太空。这颗行星自形成以来可能已经失去了大约40%的质量。这个近在咫尺的偏离轨道表明,GJ3470b曾经在其星系中的某个地方,在某个时刻,这颗行星与另一颗行星的引力纠缠在一起,被拉入了一条新的轨道,最终在另一个邻近地区安家落户。比蒂说:"导致这种极地轨道的迁移历史以及所有这些质量的损失--这些都是我们通常不了解的其他系外行星目标,这些是创造这颗特殊行星的配方中的重要步骤,可以帮助我们了解像它这样的行星是如何形成的。"通过对这颗行星大气中残留成分的进一步分析,以及华大麦迪逊分校威斯康星起源研究中心那些专门研究原行星盘和迁移动力学的同事们的帮助,GJ3470b可能会帮助比蒂和其他人理解像它这样的行星是如何变得如此诱人的--至少从天文学家的角度来看是如此。这项研究得到了美国国家航空航天局(NASA)的资助。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1434977.htm手机版:https://m.cnbeta.com.tw/view/1434977.htm

封面图片

韦伯太空望远镜揭示了行星形成的尘埃遗迹

韦伯太空望远镜揭示了行星形成的尘埃遗迹这两张图片是AUMic周围的尘埃碎片盘,AUMic是一颗红矮星,位于32光年外的显微镜星座南部。研究小组使用韦伯的近红外相机(NIRCam)来研究AUMic。NIRCam的日冕仪阻挡了中心恒星的强光,使研究小组能够研究非常接近该恒星的区域。被遮挡住的恒星的位置在每张图像的中心用一个白色的图形标记出来。被日冕仪遮挡的区域用一个虚线圈表示。韦伯提供了3.56微米(顶部,蓝色)和4.44微米(底部,红色)的图像。研究小组发现,圆盘在较短或"较蓝"的波长下更亮,这可能意味着它含有大量细小的尘埃,在散射较短波长的光时更有效。NIRCam图像使研究人员能够追踪这个直径为60个天文单位(56亿英里)的圆盘,它离恒星的距离为5个天文单位(4.6亿英里)--相当于我们太阳系中木星的轨道。这些图像比研究小组预期的更详细、更明亮,科学家们能够在比预期的更靠近恒星的地方对圆盘进行成像。有关的恒星系统,AUMicroscopii或AUMic位于32光年外的Microscopium星座南部。它的年龄大约为2300万年,这意味着行星的形成已经结束,因为这一过程通常需要不到1000万年。这颗恒星有两颗已知的行星,由其他望远镜发现。剩下的尘埃碎片盘是剩余的行星碎片之间碰撞的结果--相当于我们太阳系中的尘埃的更大质量,创造了一种被称为黄道光的现象。"一个碎片盘通过行星个体的碰撞不断得到补充。通过研究它,我们得到了一个了解这个系统最近动态历史的独特窗口,"美国宇航局戈达德太空飞行中心的凯伦-劳森说,他是这项研究的主要作者,也是研究AUMic的研究小组成员。美国宇航局戈达德空间飞行中心的JoshSchlieder说:"这个系统是极少数拥有已知系外行星的年轻恒星和碎片盘的例子之一,它足够近,足够亮,可以使用韦伯独特的强大仪器进行全面研究。"研究小组使用韦伯的近红外相机(NIRCam)来研究AUMic。在NIRCam的日冕仪的帮助下,他们能够研究非常接近恒星的区域,因为日冕仪可以阻挡中心恒星的强光。NIRCam的图像使研究人员能够追踪到距离恒星5个天文单位(4.6亿英里)的圆盘--相当于我们太阳系中木星的轨道。这些由韦伯近红外相机(NIRCam)拍摄的围绕AUMicroscopii星的圆盘的日冕图像,显示了罗盘箭头、比例尺和颜色键供参考。北方和东方的罗盘箭头显示了图像在天空中的方向。请注意,相对于地面地图上的方向箭头(从上面看),天空中的北和东之间的关系(从下面看)是翻转的。比例尺是以天文单位标注的,也就是A.U.,这是地球和太阳之间的平均距离。这张图片中显示的视野大约是100A.U.的范围。这张图片显示的是不可见的近红外和中红外波长的光,已经转化为可见光的颜色。色键显示了收集光线时使用了哪些NIRCam滤镜。每个滤镜名称的颜色是用来表示通过该滤镜的红外光的可见光颜色。研究人员表示:"我们第一次看到的数据远远超过了预期。它比我们预期的更加详细。它比我们预期的更亮。我们探测到的圆盘比我们预期的要近。我们希望随着我们的深入挖掘,会有一些我们没有预测到的更多惊喜。"观测计划获得了3.56和4.44微米波长的图像。研究小组发现,圆盘在较短的波长下更亮,或者说"更蓝",这可能意味着它含有大量的细小灰尘,在散射较短波长的光时更有效。这一发现与之前的研究结果一致,后者发现来自AUMic的辐射压力--与更大质量的恒星的辐射压力不同--不会强大到足以将细小的尘埃从盘中喷出。虽然探测到圆盘很重要,但研究小组的最终目标是寻找宽轨道的巨行星,类似于木星、土星或我们太阳系的冰巨行星。这样的世界非常难以用过境法或径向速度法在遥远的恒星周围探测到。"这是我们第一次真正具有直接观测宽轨道行星的敏感性,这些行星的质量明显低于木星和土星。"劳森解释说:"在低质量恒星周围直接成像方面,这确实是一个新的、未知的领域。"这些结果将在今天美国天文学会第241次会议的一个新闻发布会上公布。...PC版:https://www.cnbeta.com.tw/articles/soft/1339865.htm手机版:https://m.cnbeta.com.tw/view/1339865.htm

封面图片

开普勒太空望远镜发现遥远恒星系统的神秘现象

开普勒太空望远镜发现遥远恒星系统的神秘现象据SlashGear报道,开普勒太空望远镜是人类成就的一个奇迹。这颗卫星位于低地球轨道上,寻找围绕遥远恒星的轨道上存在的系外行星。系外行星是指围绕太阳系外的一颗恒星运行的行星。2006年,国际天文学联盟为什么是行星创建了一个标准的定义,指出它必须是球形的(以这种方式形成的,有足够的质量来产生可观的引力),围绕一颗恒星(比如太阳,在太阳系中)旋转,并作为其围绕该恒星的轨道附近的最大天体。PC版:https://www.cnbeta.com/articles/soft/1326897.htm手机版:https://m.cnbeta.com/view/1326897.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人