NASA开发的创新型红外传感器提高了地球和空间成像的分辨率

NASA开发的创新型红外传感器提高了地球和空间成像的分辨率戈达德工程师MurzyJhabvala拿着他的紧凑型热成像仪技术的核心部件--一种高分辨率、高光谱范围的红外传感器,适用于小型卫星和前往其他太阳系天体的任务。资料来源:美国国家航空航天局这些相机配备了高灵敏度、高分辨率的应变层超格传感器,这些传感器最初是由美国宇航局位于马里兰州格林贝尔特的戈达德太空飞行中心开发的,由内部研究与开发(IRAD)计划资助。由于设计紧凑、重量轻、用途广,TilakHewagama等工程师可以根据不同的科学应用对它们进行定制。增强的传感器功能Hewagama说:"将滤光片直接连接到探测器上,消除了传统镜头和滤光片系统的巨大质量。这使得低质量的仪器拥有了一个紧凑的焦平面,现在可以使用更小、更高效的冷却器进行红外探测。小型卫星和任务可以从其分辨率和精确度中获益。"工程师MurzyJhabvala在马里兰州格林贝尔特的美国宇航局戈达德太空飞行中心领导了最初的传感器开发工作,并领导了今天的滤波器集成工作。Jhabvala还领导了国际空间站上的"紧凑型热成像仪"实验,该实验展示了新传感器技术如何在太空中生存,同时也证明了其在地球科学领域的重大成功。通过两个红外波段捕捉到的1500多万张图像为发明者贾巴拉、NASA戈达德同事唐-詹宁斯(DonJennings)和康普顿-塔克(ComptonTucker)赢得了2021年年度发明奖。2019年和2020年,紧凑型热成像仪在国际空间站上捕捉到了澳大利亚异常严重的火灾。凭借其高分辨率,它探测到了火锋的形状和位置,以及火锋距离居民区有多远--这些信息对急救人员至关重要。资料来源:美国国家航空航天局地球和空间观测的突破这次试验获得的数据提供了有关野火的详细信息,让人们更好地了解了地球云层和大气层的垂直结构,并捕捉到了由地球陆地特征引起的上升气流,这种上升气流被称为重力波。这种突破性的红外传感器利用层层重复的分子结构与单个光子(或光的单位)相互作用。这种传感器能以更高的分辨率分辨更多波长的红外线:从轨道上看,每个像素的分辨率为260英尺(80米),而目前的热像仪的分辨率为1000至3000英尺(375至1000米)。这些热量测量相机的成功吸引了美国国家航空航天局地球科学技术办公室(ESTO)、小企业创新与研究以及其他计划的投资,以进一步扩大其覆盖范围和应用。Jhabvala和NASA的先进陆地成像热红外传感器(ALTIRS)团队正在为今年的激光雷达、高光谱和热成像仪(G-LiHT)机载项目开发六波段版本。他说,这种首创的相机将测量地表热量,并能以高帧频进行污染监测和火灾观测。新一代火灾成像技术美国国家航空航天局戈达德地球科学家道格-莫顿(DougMorton)领导了一个ESTO项目,开发用于野火探测和预测的紧凑型火灾成像仪。莫顿说:"我们不会看到更少的火灾,因此我们正试图了解火灾在其生命周期中是如何释放能量的。这将帮助我们更好地理解在一个越来越易燃的世界中火灾的新特性。"CFI将同时监测释放更多温室气体的最热火灾和产生更多一氧化碳以及烟雾和灰烬等空气传播颗粒的较冷、燃烧的煤炭和灰烬。莫顿说:"在安全和了解燃烧释放的温室气体方面,这些都是关键因素。"莫顿的团队设想,在对火情成像仪进行机载测试后,他们将装备一个由10颗小型卫星组成的舰队,每天提供更多的火情图像,从而提供全球火情信息。他说,结合下一代计算机模型,"这些信息可以帮助森林服务和其他消防机构预防火灾,提高前线消防员的安全,保护火灾路径上居民的生命和财产安全"。探测地球内外的云层美国国家航空航天局戈达德地球科学家吴栋说,该传感器装有偏振滤光片,可以测量地球高层大气云层中的冰颗粒是如何散射和偏振光的。吴说,这一应用将补充美国国家航空航天局的浮游生物、气溶胶、云层和海洋生态系统(PACE)任务,该任务在上个月早些时候揭示了其首批光图像。两者都测量光波的偏振方向与红外光谱不同部分的传播方向的关系。他解释说:"PACE偏振计监测可见光和短波红外光。这项任务将重点关注白天观测到的气溶胶和海洋颜色科学。在中波和长波红外波段,新的红外偏振计将从白天和夜间观测中捕捉云层和表面特性。"在另一项工作中,Hewagama正在与Jhabvala和Jennings合作,加入线性可变滤光片,以提供红外光谱中更多的细节。这些滤光片可以显示大气分子的旋转和振动以及地球表面的成分。行星科学家卡莉-安德森(CarrieAnderson)说,这项技术也能让前往岩质行星、彗星和小行星的任务受益匪浅。她说,他们可以识别土星卫星恩克拉多斯(Enceladus)巨大羽流中释放出的冰和挥发性化合物。"它们本质上是冰的喷泉,"她说,"当然是冷的,但发出的光在新红外传感器的探测范围之内。在太阳的背景下观察这些羽流,可以让我们非常清楚地识别它们的成分和垂直分布。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1432581.htm手机版:https://m.cnbeta.com.tw/view/1432581.htm

相关推荐

封面图片

钻石量子传感器能以毫米的分辨率测量心脏电流

钻石量子传感器能以毫米的分辨率测量心脏电流许多心脏问题--包括心动过速和心肌颤动主要源于电流在心脏中传播方式的不完善。然而不幸的是,医生很难研究这些不完善之处,这是因为测量这些电流涉及高度侵入性程序和暴露于X射线辐射。不过幸运的是,还有其他选择。比如磁心动图(MCG)是一种有希望的间接测量心脏电流的替代方法。该技术涉及感应心脏附近由心脏电流引起的磁场的微小变化。这可以以一种完全无接触的方式完成。为此,科研人员们已经开发了适合这一目的的各种类型的量子传感器。然而它们的空间分辨率被限制在厘米级,这对于检测在毫米级传播的心脏电流来说是不够的。此外,这些传感器中的每一个都有其实际限制,如尺寸和工作温度。在日前发表在《CommunicationsPhysics》上的一项新研究中,一个科学家团队开发了一种新型装置以更高的分辨率进行MCG。他们的方法是基于一个由氮空位组成的钻石量子传感器,氮空位作为特殊的磁“中心”对心脏电流产生的弱磁场敏感。研究人员由日本东京工业大学的TakayukiIwasaki副教授领导。但如何观察这些中心的状态以提取有关心脏电流的信息呢?事实证明,该传感器也是荧光的,这意味着它很容易吸收特定频率的光,然后以不同的频率重新发射出来。最重要的是,在氮空位处重新发射的光的强度会根据外部磁场的强度和方向而变化。研究人员创建了一个MCG装置,其使用一个532纳米(绿色)激光器来激发钻石传感器和一个光电二极管来捕捉重新发射的光子(光粒子)。另外,他们还开发了数学模型以准确地将这些捕获的光子跟相应的磁场及反过来与负责这些光子的心脏电流进行映射。凭借前所未有的5.1毫米的空间分辨率,拟议的系统可以创建在实验室大鼠心脏中测量的心脏电流的详细二维地图。此外,哥们其他成熟的需要低温的MCG传感器不同,钻石传感器可以在室温下运行。这使研究人员能将他们的传感器放置在极其靠近心脏组织的位置,这放大了测量的信号。Iwasaki博士强调道:“我们的非接触式传感器的优势跟我们目前的模型相结合,其将允许使用小型哺乳动物模型对心脏缺陷进行更精确的观察。”总的来说,这项研究中开发的MCG装置似乎是一个有希望的工具,它可以理解许多心脏问题及其他涉及电流的身体过程。在这方面,Iwaasaki说道:“我们的技术将能研究各种心律失常的起源和发展及其他生物电流驱动的现象。”...PC版:https://www.cnbeta.com/articles/soft/1307761.htm手机版:https://m.cnbeta.com/view/1307761.htm

封面图片

思特威:2MP、4MP、8MP 分辨率黑光图像传感器均已量产

思特威:2MP、4MP、8MP分辨率黑光图像传感器均已量产思特威在互动平台表示,公司的主营业务为高性能CMOS图像传感器芯片的研发、设计和销售,我们并不直接制造黑光全彩摄像头,而是和业内知名主控SoC厂商联手打造基于黑光CMOS图像传感器(CIS)和AIISP主控SoC芯片的黑光全彩全天候录制解决方案,助力终端客户打造性能升级的黑光摄像头系统。截至目前,思特威2MP、4MP、8MP分辨率黑光图像传感器均已量产,消费者若想购买黑光全彩摄像头,可以关注与我们合作的各大终端客户。

封面图片

三星似乎正在开发两款高分辨率1英寸影像传感器 但上架尚需时日

三星似乎正在开发两款高分辨率1英寸影像传感器但上架尚需时日不过,一份新的报告显示,三星似乎正在开发两种ISOCELL摄像头传感器。这些传感器被称为ISOCELLHW1和ISOCELLHW2,如果你回顾一下命名方式,就会发现这将是全新的传感器。这两种传感器都具有4.32亿像素的惊人分辨率,但也有一些不同之处。例如,ISOCELLHW1的传感器为1/1.05英寸,像素为0.56µm,而HW2的传感器为1/1.07英寸,像素为0.5µm。现在,我知道这些传感器并不完全是1英寸,但它们非常接近1英寸,因此将作为1英寸传感器进行销售。遗憾的是,该消息来源没有提供使用这些三星传感器的手机的任何信息。该消息称,GalaxyZFold6将使用与GalaxyZFlip5相同的传感器。另一方面,GalaxyZFold7将改用2亿像素的ISOCELLHP5摄像头,传感器尺寸为1/1.3英寸,像素为0.5µm。很高兴能够看到三星终于站出来发布了更大尺寸的传感器,再加上高像素,更高的画质显然已经距离我们不远了。...PC版:https://www.cnbeta.com.tw/articles/soft/1388401.htm手机版:https://m.cnbeta.com.tw/view/1388401.htm

封面图片

豪威发布OV01D1R图像传感器 在低功耗单摄像头中实现单红外和常开功能

豪威发布OV01D1R图像传感器在低功耗单摄像头中实现单红外和常开功能出于隐私需求以及即时免触摸登录的便利性,生物特征身份验证和HPD在笔记本电脑中日益普及,HPD通常由来自RGB传感器的常开电流供电。但是,当RGB传感器被物理隐私快门遮挡时,HPD将被禁用,而豪威推出的OV01D1R智能传感器解决了这个问题。该设计中包括首个集成摄像头解决方案:单红外+常开功能,即使RGB传感器被物理隐私快门遮挡,独立的OV01D传感器仍然能够实现HPD和人脸识别功能。这款传感器保持了超低功耗流,满足常开功能所需,而2微米像素在灵敏度和MTF(调制传递函数)方面性能优异,使其能够保持HPD和人脸认证功能。此外,豪威能够将三到四个传感器的功能整合到一个设备中,降低了成本和模块设计复杂度。值得注意的是,OV01D1R采用创新的单红外彩色滤光片阵列,在单个传感摄像头中同时支持HPD和人脸识别功能。OV01D1R基于PureCel像素技术,是一款采用1/6.13英寸光学格式的原始100万像素低功耗(3帧/秒时仅为4.7毫瓦)图像传感器。它能以30帧/秒的帧率提供1280x720分辨率。这款新传感器可应用于笔记本电脑、平板电脑、显示器和网路摄影机的内嵌摄像头,以及门铃和家庭安防摄像头。OV01D1R现已出样,将于2024年第四季度投入量产。...PC版:https://www.cnbeta.com.tw/articles/soft/1433837.htm手机版:https://m.cnbeta.com.tw/view/1433837.htm

封面图片

大阪大学研究人员开发出柔韧可弯曲的光学传感器 揉成一团也能用

大阪大学研究人员开发出柔韧可弯曲的光学传感器揉成一团也能用在最近发表于《先进材料》(AdvancedMaterials)上的一项研究中,大阪大学科学与工业研究所(SANKEN)的研究人员在一种超薄柔性薄片上开发出了一种光学传感器,这种传感器可以弯曲而不会断裂。事实上,这种传感器非常灵活,即使被揉成一团也能正常工作。在照相机中,光学传感器是感应穿过镜头的光线的装置,类似于人眼的视网膜。传感器设计的创新"传统的光学传感器是使用无机半导体和铁电材料制造的,"该研究的主要作者ReiKawabata说。"这使得传感器变得僵硬,无法弯曲。为了避免这个问题,我们研究了另一种探测光的方法。"与传统的光传感器不同,研究人员使用的是印在超薄聚合物基底(小于5微米)上的微小碳纳米管光电探测器阵列。当暴露在光线下时,碳纳米管会发热,形成热梯度,然后产生电压信号。在印刷过程中掺入化学载体可进一步提高纳米管的灵敏度。利用这些纳米管,可以测量可见光以及与热或分子有关的红外光。用于宽带红外热分析的集成有机电路的超灵活无线成像仪利用片状光学传感器对光、热和分子进行探测和成像。无线技术集成除了碳纳米管传感器,聚合物基板上还印有有机晶体管,将电压信号组织成图像信号。要读取这种信号,计算机不需要通过电线与传感器进行物理连接。取而代之的是一个无线蓝牙模块。该研究的资深作者荒木祯平说:"有了这套无线系统,我们的成像仪就能附着在柔软和弯曲的物体上,对其表面或内部进行分析,而不会损坏它们。"集成了碳纳米管光电探测器和有机晶体管的片式光学传感器研究人员制作了薄片型光学传感器的原型,并测试了其感应人体手指或电线等物体的热量以及流经管道的葡萄糖的能力。他们发现,这种光学传感器在很宽的波长范围内都具有很高的灵敏度。此外,在室温和大气条件下,测试表明它具有很高的弯曲耐久性,即使被揉皱也能正常工作。这种无线测量系统和薄片型光学传感器的独特优势将为执行许多任务(如无需采样即可评估液体质量)带来更简单的新方法。研究人员认为,它在无损成像、可穿戴设备和软机器人等许多应用领域都大有可为。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1419657.htm手机版:https://m.cnbeta.com.tw/view/1419657.htm

封面图片

加州理工学院激光声成像技术迎来重大飞跃 实现三维成像并减少所需传感器

加州理工学院激光声成像技术迎来重大飞跃实现三维成像并减少所需传感器加州理工学院最近的研究对一种名为PATER的光声成像技术进行了重大改进,该技术现已发展为PACTER。新版本简化了技术,减少了对多个传感器的需求,实现了三维成像,并且无需在每次使用前进行校准。这些进步使该技术在医学成像应用中更加实用和高效。资料来源:加州理工学院加州理工学院医学工程和电子工程布伦教授王力宏实验室的最新研究就属于后者。在发表于《自然-生物医学工程》(NatureBiomedicalEngineering)杂志上的一篇论文中,王力宏和博士后学者张一德展示了他们如何简化和改进他们于2020年首次公布的一种成像技术。这项技术是一种名为PATER(通过极性中继的光声地形图)的光声成像技术,是王建民研究小组的专长。光声成像技术的改进在光声成像中,激光脉冲进入组织,被组织的分子吸收,引起分子振动。每个振动的分子都是超声波的来源,可用于以类似超声波成像的方式对内部结构进行成像。然而,光声成像在技术上具有挑战性,因为它能在短时间内产生所有成像信息。为了捕捉这些信息,王的光声成像技术的早期版本需要将数百个传感器(换能器)组成的阵列紧贴被成像组织的表面,这使得该技术既复杂又昂贵。王和张通过使用一种称为"麦积继电器"的装置减少了所需传感器的数量,这种装置可以减慢信息(以振动的形式)流入传感器的速度。正如之前有关PATER的报道所解释的那样:在计算中,有两种主要的数据传输方法:串行和并行。在串行传输中,数据以单一数据流通过一个通信通道发送。在并行传输中,多个数据通过多个通信通道同时发送。这两种通信方式大致类似于商店中使用收银机的方式。串行通信就像一台收银机。每个人都排在同一条队伍中,看到同一个收银员。并行通信就好比有几个收银机,每个收银机有一条线。Wang设计的拥有512个传感器的系统与拥有许多收银机的商店类似。所有传感器同时工作,每个传感器接收激光脉冲产生的超声波振动的部分数据。由于系统发出的超声波振动是在短时间内产生的,因此如果要在这么短的时间内收集所有数据,单个传感器将不堪重负。这就是麦哲伦继电器的用武之地。正如王力宏所描述的那样,遍历中继器是一种可以让声音在周围回荡的腔体。当超声波振动通过遍历中继器时,它们会在时间上被拉长。回到收银机的比喻,这就好比让另一名员工协助单个收银员,告诉顾客在店里走几圈,直到收银员准备好接待他们,这样收银员就不会手忙脚乱了。PACTER:下一步发展这项技术的最新版本被称为PACTER(PhotoacousticComputedTomographyThroughanErgodicRelay),它更进一步,允许系统使用单个传感器进行操作,通过使用软件,可以收集到与6,400个传感器一样多的数据。兼任安德鲁和佩吉-钱格(AndrewandPeggyCherng)医学工程领导力主席和医学工程执行官的王说,PACTER在另外两个方面改进了PATER。改进之一是PACTER可以生成三维图像,而PATER只能生成二维图像。这得益于改进软件的开发。"过渡到三维成像大大提高了数据要求。我们面临的挑战是如何通过单个传感器传输大量增加的数据,"张说。"我们通过改变方法找到了解决方案。我们首先将一个传感器扩展为数千个虚拟传感器,而不是直接采用计算密集型方法从单传感器数据中重建三维图像。这一想法简化了三维图像重建的过程,使其与我们光声成像的传统方法更加接近"。其次,与PATER不同,PACTER无需在每次使用时进行校准。"使用PATER时,我们必须在每次使用时对其进行校准,而这是不现实的。我们摆脱了这种每次使用时的一次性校准,"王说。之所以需要校准,是因为当系统向组织发射激光脉冲时,脉冲的"回波"会反弹到换能器上,使其无法感知直接的超声波信息。PACTER通过在系统中加入延迟线来解决这个问题。延迟线迫使回波在返回换能器的途中经过更长的物理路径,这样它就能在接收到直接超声波信息后到达换能器。描述这项工作的论文"利用单元素探测器进行单次容积光声断层扫描的血流动力学超快纵向成像"发表在11月30日出版的《自然-生物医学工程》(NatureBiomedicalEngineering)杂志上。该论文的共同作者包括:胡鹏(23年博士),前医学工程研究生;李磊(19年博士),前医学工程博士后;曹睿,医学工程博士后;AnjulKhadria,前医学工程博士后;KonstantinMaslov,前加州理工学院职员科学家;童欣,医学工程研究生;以及南加州大学的曾玉顺、蒋来明和周其发。研究经费由美国国立卫生研究院提供。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1404763.htm手机版:https://m.cnbeta.com.tw/view/1404763.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人