远古海洋和行星碰撞的遗迹 科学家揭开地球神秘"D"层的新面纱

远古海洋和行星碰撞的遗迹科学家揭开地球神秘"D"层的新面纱与完美的球体不同,D"层出人意料地错落有致。它的厚度因地而异,有些地区甚至完全没有"D"层--就像大陆高出地球海洋一样。这些有趣的变化吸引了地球物理学家的注意,他们将D"层描述为一个异质或非均匀区域。由胡青阳博士(高压科学与技术高等研究中心)和邓杰博士(普林斯顿大学)领导的一项新研究表明,"D"层可能起源于地球的早期。他们的理论基于"巨型撞击假说"(GiantImpacthypothesis),该假说认为一个火星大小的天体撞击了原地球,在撞击后形成了一个覆盖整个地球的岩浆海洋。他们认为,"D"层可能是这一巨大撞击留下的独特成分,可能蕴藏着地球形成的线索。邓杰博士强调,在这个全球岩浆海洋中存在大量的水。这些水的确切来源仍是一个争论不休的话题,人们提出了各种理论,包括通过星云气体和岩浆之间的反应形成,或由彗星直接输送。普遍的观点认为,水会随着岩浆的冷却而向岩浆海洋的底部集中。到最后阶段,最靠近地核的岩浆所含的水量可能与地球现今的海洋相当。海底岩浆海洋中的极端压力和温度条件创造了一种独特的化学环境,促进了水和矿物之间发生意想不到的反应。胡青阳博士解释说:"我们的研究表明,这种含水岩浆海洋有利于形成一种富铁相,即过氧化铁镁。这种过氧化物的化学式为(Fe,Mg)O2,与下地幔中的其他主要成分相比,它对铁的偏好更为强烈。根据我们的计算,这种过氧化物对铁的亲和力可能会导致在几公里到几十公里厚的地层中积累以铁为主的过氧化物。"地核-地幔边界异质结构的形成这种富铁过氧化物相的存在将改变D"层的矿物组成,偏离我们目前的理解。根据新的模型,D"层的矿物将以一种新的组合为主:贫铁硅酸盐、富铁(铁、镁)过氧化物和贫铁(铁、镁)氧化物。这种以铁为主的过氧化物还具有低地震速度和高导电性,使其成为解释D"层独特地球物理特征的潜在候选物质。这些特征包括超低速度区和高电导率层,两者都是D"层众所周知的成分异质性的原因。研究结果表明,由岩浆海洋中的古水形成的富铁过氧化物在形成"D"层的异质结构方面发挥了至关重要的作用。这种过氧化物对铁的强烈亲和力在这些富铁斑块和周围地幔之间形成了鲜明的密度对比。从根本上说,它就像一个绝缘体,阻止它们混合,并有可能解释在下地幔底部观察到的长期异质性。这个模型与最近的数值建模结果非常吻合,表明最下层地幔的异质性可能是一个长期存在的特征。编译自/scitechdaily...PC版:https://www.cnbeta.com.tw/articles/soft/1432963.htm手机版:https://m.cnbeta.com.tw/view/1432963.htm

相关推荐

封面图片

韩国科学家解决金属氧化物层降解问题 实现21.68%的透明太阳能电池效率

韩国科学家解决金属氧化物层降解问题实现21.68%的透明太阳能电池效率韩国能源研究所(KoreaInstituteofEnergyResearch)大大推进了半透明过氧化物太阳能电池技术的发展,实现了21.68%的世界领先效率,并显示出卓越的耐久性。这一突破旨在提高太阳能电池在窗口和串联配置中的应用,应对到2050年实现碳中和的关键挑战。通过创新研究,该团队提高了这些电池的稳定性和效率,为太阳能领域做出了重大贡献。资料来源:韩国能源研究院这种半透明太阳能电池的效率达到破纪录的21.68%,是世界上使用透明电极的过氧化物太阳能电池中效率最高的。此外,它们还表现出了卓越的耐久性,在运行240小时后仍能保持99%以上的初始效率。为了到2050年实现碳中和,关键在于实现下一代太阳能电池技术的"超高效率"和"应用领域多样化",克服安装空间和国土面积的限制。这就需要高效和多功能的技术,如串联太阳能电池和窗用太阳能电池。这两种技术都需要高效、稳定的半透明过氧化物太阳能电池。为了制造半透明的过氧化物太阳能电池,有必要将传统不透明太阳能电池的金属电极换成允许光线通过的透明电极。在此过程中,会产生高能粒子,导致空穴传输层性能下降。左起为透辉石太阳能电池、半透明透辉石太阳能电池、透辉石-硅串联太阳能电池。资料来源:韩国能源研究院为了避免这种情况,通常会在空穴传输层和透明电极层之间沉积一层金属氧化物作为缓冲。然而,与在相同条件下生产的不透明太阳能电池相比,半透明器件的电荷传输性能和稳定性都有所下降,其确切原因和解决方案尚未明确。研究人员利用电光分析和原子级计算科学,找出了在制造半透明过氧化物太阳能电池过程中电荷传输性能和稳定性降低的原因。他们发现,为提高空穴传输层导电性而加入的锂离子(Li)会扩散到作为缓冲层的金属氧化物层中,最终改变金属氧化物缓冲层的电子结构,使其特性降低。此外,除了找出原因之外,研究人员还通过优化空穴传输层的氧化时间来解决问题。他们发现,通过优化氧化,将锂离子转化为稳定的氧化锂(LixOy),可以减轻锂离子的扩散现象,从而提高器件的稳定性。这一发现揭示了以前被认为是简单反应副产品的氧化锂在提高效率和稳定性方面可以发挥关键作用。安世镇、安承奎、严康勋(左起)和纳克维-赛义德-迪达尔-海德尔(NaqviSyedDildarHaider)在圆圈内。图片来源:韩国能源研究院所开发的工艺制成的半透明过氧化物太阳能电池效率高达21.68%,是所有透明电极过氧化物太阳能电池中效率最高的。此外,这项研究还证明,在黑暗储存条件下400小时和在连续照明运行条件下240多小时,其初始效率仍能保持在99%以上,令人印象深刻,展示了其出色的效率和稳定性。研究团队进一步将开发的太阳能电池用作串联太阳能电池的顶层电池,创造了国内首个双面串联太阳能电池,既可利用从背面反射的光,也可利用从正面入射的光。通过与JusungEngineeringCo.,Ltd.和德国Jülich研究中心合作,双面串联太阳能电池在后方反射光为标准太阳光20%的条件下,实现了较高的双面等效效率,四端子为31.5%,双端子为26.4%。这项研究的负责人、光伏研究部的AhnSeJin博士表示:"这项研究通过考察有机化合物和金属氧化物缓冲层界面上发生的降解过程,在该领域取得了重大进展,而这种降解过程是半透明过氧化物太阳能电池所独有的,我们的解决方案很容易实现,这表明我们开发的技术在未来的应用中具有巨大潜力"。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1420785.htm手机版:https://m.cnbeta.com.tw/view/1420785.htm

封面图片

从熔岩到生命 科学家探究地球早期高度氧化的岩浆海洋

从熔岩到生命科学家探究地球早期高度氧化的岩浆海洋研究提供了有关早期地球大气层的新见解,表明它是由氧化态比以前认为的更高的岩浆海洋中的脱气挥发物形成的。研究发现,早期地球岩浆海洋的Fe3+含量是今天上地幔的十倍,从而形成了富含二氧化碳和二氧化硫的大气层。陆地行星的大气层一直被认为是由内部的挥发物脱气形成的,其成分主要受地幔氧化态的控制。要了解地幔氧化态,地幔中亚铁(Fe2+)和铁(Fe3+)的丰度是关键,因为地幔氧化态随这两种铁氧化物的相对丰度而变化。图像中心的明亮区域表示淬火金属熔体,周围的灰色区域表示淬火硅酸盐熔体。样品被封装在石墨囊中,在加热实验中转变为金刚石。资料来源:爱媛大学地球动力研究中心地幔氧化状态和研究结果日本爱媛大学领导的一项实验研究表明,在相当于下地幔深度的高压条件下,金属饱和岩浆中通过Fe2+的氧化还原歧化形成Fe3+的效率比以前想象的要高。在这一反应中,Fe3+和金属铁(Fe0)由2Fe2+生成,Fe0偏析到地核中增加了残余岩浆中Fe3+的含量及其氧化态。实验结果表明,地核形成时地球岩浆海洋中的Fe3+含量比现在的上地幔高出约一个数量级。对早期地球岩浆洋的影响这表明岩浆洋在地核形成后的氧化性比现在的地幔强得多,这种高氧化性岩浆的挥发物脱气形成的大气应该富含二氧化碳和二氧化硫。此外,作者还发现,根据地质记录的推断,估计的地球岩浆海洋氧化态可以解释40多亿年前的哈代岩浆的氧化态。由于生物分子在富含二氧化碳的大气中的形成效率相当低,作者推测地球形成后还原物质的后期增殖在提供生物可用有机分子和形成宜居环境方面发挥了重要作用。...PC版:https://www.cnbeta.com.tw/articles/soft/1378841.htm手机版:https://m.cnbeta.com.tw/view/1378841.htm

封面图片

添加银反射镜使过氧化物太阳能电池的效率提高三倍

添加银反射镜使过氧化物太阳能电池的效率提高三倍现在,一项新的研究将过氧化物的效率提高了3.5倍,甚至没有对材料本身进行调整。相反,研究小组发现,在其下方添加一层不同的材料,改变了过氧化物中电子的相互作用,减少了一个能量消耗的过程。过氧化物和其他光伏材料通过让阳光激发材料中的电子来发电,使它们从原子中跳出,准备被引导以产生电流。但有时,电子会落回它们留下的"空洞"中,减少了整体电流,因此也降低了材料的效率。这就是所谓的电子重组。研究人员发现,他们能够通过将过氧化物放置在由单独的银或银和氧化铝的交替层组成的衬底上,大幅减少电子重组。该团队说,这样做会产生一种镜子,产生电子-空穴对的反转图像,从而减少电子与空穴重组的可能性。在测试中,工程师们表明,加入这些层后,光转换的效率提高了3.5倍。该研究的主要作者郭春雷说:"一块金属可以做的工作和湿式实验室里的复杂化学工程一样多。随着新的过氧化物的出现,我们就可以用我们基于物理学的方法来进一步提高它们的性能。"这项研究发表在《自然-光子学》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1345339.htm手机版:https://m.cnbeta.com.tw/view/1345339.htm

封面图片

加州大学洛杉矶分校的技术突破可能带来更耐用、更便宜的太阳能电池

加州大学洛杉矶分校的技术突破可能带来更耐用、更便宜的太阳能电池从理论上讲,基于过氧化物的太阳能电池可以用比硅成本更低、更容易获得的原材料来制造;它们也可以用更少的能源和更简单的制造工艺来生产。但是到目前为止,一个绊脚石是过氧化物在暴露于光和热的情况下会分解--这对旨在从太阳中产生能量的设备来说尤其成问题。加州大学洛杉矶分校的博士后研究员和该研究的第一作者YepinZhao拿着一枚基于过氧化物的太阳能电池。资料来源:YangLab/UCLA现在,一个由加州大学洛杉矶分校领导的国际研究合作已经开发出一种方法,在太阳能电池中使用过氧化物,同时保护它不受导致其恶化的条件影响。在最近发表在《自然材料》上的一项研究中,科学家们将少量的离子-也就是带电的原子直接添加到过氧化物中。他们发现,当暴露在光和热下时,增强后的过氧化物晶体不仅更加耐用,而且还能更有效地将光转化为电。通讯作者、加州大学洛杉矶分校工程系CarolandLawrenceE.Tannas,Jr.教授说:"可再生能源至关重要。过氧化物将是一个游戏规则的改变者,因为它可以以硅的方式进行大规模生产,而且我们已经确定了一种添加剂,将使这种材料变得更好。"卤化物过氧化物能够将光转化为电,是由于其分子形成重复的立方体网格的方式。这种结构是由带相反电荷的离子之间的键固定在一起的。但是,光和热往往会导致带负电的离子从过氧化物中弹出,这破坏了晶体结构,削弱了该材料的能量转换特性。图中显示了未经改变的过氧化物分子(左)的结构,其中碘离子(紫色)正在迁移;以及添加了钕离子(红色)的过氧化物分子,以帮助保留碘离子。资料来源:YangLab/UCLA钕通常被用于麦克风、扬声器、激光器和装饰玻璃。它的离子大小正好可以嵌在立方过氧化物晶体中,而且它们带有三个正电荷,科学家们假设这将有助于将带负电的离子固定在原位。研究人员在每10000个过氧化物分子中加入了大约8个钕离子,然后测试了该材料在太阳能电池中的性能。在最大功率下工作并在连续光照下超过1000小时,使用增强型过氧化物的太阳能电池保持了约93%的光转换效率。相比之下,使用标准过氧化物的太阳能电池在相同的条件下经过300小时后失去了一半的电力转换效率。研究小组还在没有任何设备取电的情况下对太阳能电池进行了连续照射,这加速了过氧化物的降解。一个使用含钕的过氧化物的设备在超过2000小时后保留了84%的电力转换效率,而一个使用标准过氧化物的设备在该时间后直接无法使用。为了测试材料承受高温的能力,研究人员将带有这两种材料的太阳能电池加热到大约180华氏度。使用增强型过氧化物的太阳能电池在超过2000小时后保持了约86%的效率,而标准的过氧化物装置在这段时间内完全失去了将光转化为电能的能力。在以前的许多旨在使过氧化物燃料电池更耐用的研究中,研究人员已经尝试在材料上添加保护层,但这在很大程度上是失败的。增强材料本身的想法来自于主要作者YepinZhao,他是Yang实验室的一名博士后研究人员。Zhao说,他的灵感来自于一种通常用于生产硅半导体的技术--添加少量的其他化合物来改变材料的特性。Zhao说:"离子往往像高速公路上的汽车一样在过氧化物中移动,这导致了材料的分解。有了钕,我们找到了一个路障来减缓交通并保护材料。"Yang说,这一进展可能有助于过氧化物太阳能电池在未来两到三年内进入市场。...PC版:https://www.cnbeta.com.tw/articles/soft/1336383.htm手机版:https://m.cnbeta.com.tw/view/1336383.htm

封面图片

新研发的全过氧化物串联太阳能电池拥有创纪录的高效率和电压表现

新研发的全过氧化物串联太阳能电池拥有创纪录的高效率和电压表现从效率上看,过氧化物燃料电池的运用比例在十年多一点的时间里急剧上升,从2009年的4%以下上升到2021年的25%以上,以至于现在可以与硅基太阳能电池匹敌。在所谓的串联电池中,它的效果甚至更好,在这种电池中,多层材料被堆叠在一起,以收集来自太阳的不同波长的光。例如,Perovskit-硅串联太阳能电池最近超过了30%的效率里程碑。在这项新的研究中,一个来自多伦多大学的工程师团队创造并测试了一个全过氧化物串联太阳能电池。一个太阳能电池怎么可能是全过氧化物而仍然是串联的呢?这是因为该材料的厚度和化学成分可以被调整,使其能够利用太阳光谱的不同部分,因此两种不同的材料可以结合在一个设备中。"在我们的电池结构中,顶部的过氧化物层有一个更宽的带隙,它在光谱的紫外线部分以及一些可见光中吸收良好,"该研究的共同牵头人李崇文说。"底层有一个狭窄的带隙,它更多地被调整到光谱的红外部分。在这两者之间,我们可以实现覆盖比用硅材料吸收更多的光谱。"使用这种设计,该团队报告说,一个尺寸为1平方厘米(0.15英寸)的太阳能电池的最大效率为27.4%,这将是这种类型的电池的新纪录,并且对于任何类型的太阳能电池来说都令人印象深刻。然而,该团队并没有声称自己是冠军,因为美国国家能源局之前的独立认证记录了26.3%的效率,而全过氧化物串联太阳能电池比目前的官方纪录保持者仅差0.1%。该电池确实在其电压表现方面取得了新的纪录。该团队测量的开路电压为2.19伏,是所有全过氧化物串联太阳能电池中最高的。这两个令人印象深刻的数据都是由于在过氧化物吸光层和携带电子的层之间的界面上进行了调整。研究小组发现,电场在整个过氧化物的表面并不一致,这意味着一些电子会流失到电路中。因此,研究小组添加了一层被称为1,3-丙二铵(PDA)的薄涂层,它使表面的电荷分布更均匀。该团队表示,未来的工作将集中在通过使电池更稳定、增加电流和扩大电池的尺寸来提高太阳能电池的效率。该研究发表在《自然》杂志上。了解更多:https://news.engineering.utoronto.ca/international-research-collaboration-produces-all-perovskite-tandem-solar-cell-with-high-efficiency-record-voltage/...PC版:https://www.cnbeta.com.tw/articles/soft/1332957.htm手机版:https://m.cnbeta.com.tw/view/1332957.htm

封面图片

32.5%!过氧化物/硅串联太阳能电池技术进步打破了转化效率纪录

32.5%!过氧化物/硅串联太阳能电池技术进步打破了转化效率纪录但最好的结果似乎是当这两种材料搁置其竞争关系并合作时。过氧化物/硅串联太阳能电池比任何一种材料单独使用都更有效,因为它们能够收集太阳光谱的不同部分--过氧化物能更好地吸收蓝光,而硅则更注重红色和红外波长。新的HZB装置是由一个由几层薄的过氧化物组成的顶部电池和一个用硅做的底部电池组成的。有了一系列的层,不同颜色的光就可以过滤到较低的层次,并将电损耗降到最低。该团队还在活性区域和电极之间设计了一个新界面,这有助于提高电池的整体效率。新型过氧化物/硅串联太阳能电池的分解图最终的结果是一个拥有32.5%转化效率的过氧化物/硅串联太阳能电池。根据美国国家可再生能源实验室(NREL)保存并定期更新的图表,这个已经被独立验证的新记录是目前所有新兴光伏技术中最高的。与几个月前的记录保持者31.25%相比,这是一个相当大的进步,而一年前它甚至不到30%。该团队声称这一最新进展将该技术推向了一个重要的新领域。HZB科学主任BerndRech教授说:"在32.5%转化率下,HZB串联的太阳能电池效率现在已经达到了以前只有昂贵的III/V半导体才能达到的范围。NREL的图表清楚地显示了EPFL和HZB的最后两个增长是多么的壮观"。...PC版:https://www.cnbeta.com.tw/articles/soft/1335723.htm手机版:https://m.cnbeta.com.tw/view/1335723.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人