远古耀斑的回声:天文学家揭秘银河系的"安静怪物"Sgr A*

远古耀斑的回声:天文学家揭秘银河系的"安静怪物"SgrA*SgrA*是距离地球最近的超大质量黑洞,距离地球26000光年。由于黑洞强大的引力,研究附近的环境非常困难。它扭曲了附近天体的视线,使它们难以被观测到。不过,通过观察黑洞耀斑对附近分子云的影响,还是有办法做到这一点的。天文学家最近发现了数百年前未知耀斑的回声,这些耀斑早在有望远镜观测之前就已经发生了。这些回声表明,SgrA*吞噬物质的频率相当高。密歇根州立大学研究员格蕾丝-桑格-约翰逊(GraceSanger-Johnson)通过筛选十年来的X射线数据,从银河系中央超大质量黑洞SgrA*发现了九个以前未被发现的X射线耀斑。这张十多年前公布的NASA图像显示了一个X射线耀斑的例子。图片来源:NASA/JPL-Caltech密歇根州立大学的两位研究人员--格雷斯-桑格-约翰逊和杰克-尤特详细研究了耀斑及其光回波。他们的发现表明,在非常遥远的过去,当SgrA*摄取物质时,SgrA*曾有过活动。该活动产生的X射线辐射从SgrA*经过数百年的传播,反弹到附近的分子云并使其变亮。这产生的光回波又经过了大约26000年才到达地球。因此,当Uteg和Sanger研究这些耀斑和光回波时,他们实际上是在观察过去。利用NuSTAR搜寻SgrA*X射线耀斑桑格-约翰逊分析了十年来的数据,寻找SgrA*的饮食习惯所产生的X射线耀斑。在搜索过程中,她又发现了九次此类爆发的证据。耀斑通常非常引人注目。由于耀斑非常明亮,天文学家有机会研究黑洞周围的直接环境。桑格-约翰逊研究的数据来自NuSTAR任务。它的目标是高能X射线和伽马射线辐射。这些辐射通常来自星系中心的活跃区域、超新星爆炸和其他活跃事件。桑格-约翰逊收集和分析的数据现已成为SgrA耀斑的数据库。"我们希望通过建立这个SgrA耀斑数据银行,我们和其他天文学家能够分析这些X射线耀斑的特性,并推断出超大质量黑洞极端环境内部的物理条件,"桑格-约翰逊说。天文学家确实从其他观测中了解到SgrA*星的爆发。这是美国国家航空航天局的成像X射线极化探测器和钱德拉X射线天文台的观测结果。IXPE和钱德拉数据的结合帮助研究人员确定,在分子云中发现的X射线光来自人马座A*大约200年前的一次爆发。资料来源:钱德拉:NASA/CXC/SAO;IXPE:NASA/MSFC/F.Marinetal;SonificationCredit:NASA/CXC/SAO/K.Arcand,SYSTEMSounds(M.Russo,A.Santaguida)追踪耀斑的回声在桑格-约翰逊研究NuSTAR数据的同时,本科生研究员杰克-尤特格(JackUteg)也在研究黑洞周围的活动。他分析了一个被称为"桥"的巨型分子云20年来的数据。这些数据来自NuSTAR和欧洲航天局XMM-牛顿天文台的观测。桥"靠近SgrA*,通常不会发出自己的光。因此,当它在X射线中变亮时,天文学家们就注意到了。他说:"我们看到的亮度很可能是SgrA*去X射线爆发的延迟反射。我们在2008年左右首次观测到亮度的增加。然后,在接下来的12年里,来自大桥的X射线信号持续增加,直到2020年达到峰值亮度。"Uteg的工作帮助天文学家确定了SgrA*在X射线中比现在亮大约五个数量级。这种变亮表明我们的中央超大质量黑洞很可能吞噬了附近的气体云,亮度还揭示了其他特性。他说:"我们关注这团气体云变亮的一个主要原因是,它能让我们确定过去SgrA*爆发的亮度。"NuSTAR航天器示意图,该航天器有一根30英尺(10米)长的桅杆,将光学模块(右)与焦平面上的探测器(左)隔开。这种分隔对于探测X射线的方法来说是必要的。资料来源:NASA/JPL-加州理工学院SgrA*的光回声揭示了什么?得益于它们的工作,天文学家有了另一种方法来解决在黑洞周围观测的困难。她说:"耀斑和焰火都能照亮黑暗,帮助我们观测到通常无法观测到的东西。这就是为什么天文学家需要知道这些耀斑发生的时间和地点,这样他们就可以利用这些光来研究黑洞的环境。"天文学家们知道黑洞会不定期地吞噬附近的物质,但这些发现有助于他们确定黑洞吞噬物质的频率,以及由此产生的耀斑对附近邻域的影响。MSU助理教授张硕(ShuoZhang)是这两项研究的团队负责人,他表示,关于这些耀斑发生的频率以及过去发生过多少耀斑,还有很多问题。张说:"这是我们第一次为我们的超大质量黑洞周围的分子云构建了一个长达24年的变异性,这个分子云已经达到了它的X射线光度峰值。它使我们能够了解到SgrA*在大约200年前的活动情况。我们在MSU的研究团队将继续这种'天体考古游戏',进一步揭开银河系中心的神秘面纱。"MSU团队的这些工作成果在美国天文学会2024年夏季会议上做了介绍。改编自最初发表在《今日宇宙》上的一篇文章。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1435271.htm手机版:https://m.cnbeta.com.tw/view/1435271.htm

相关推荐

封面图片

"耀斑"与"回声":揭开银河系核心怪兽黑洞的神秘面纱

"耀斑"与"回声":揭开银河系核心怪兽黑洞的神秘面纱密歇根州立大学研究员格蕾丝-桑格-约翰逊(GraceSanger-Johnson)通过筛选十年来的X射线数据,从银河系中央超大质量黑洞人马座A*发现了九个以前未被发现的X射线耀斑。这张十多年前公布的NASA图像显示了一个X射线耀斑的例子。图片来源:NASA/JPL-CaltechMSU荣誉学院的本科生研究员杰克-尤特格(JackUteg)分析了来自黑洞附近分子云的X射线回波,从而窥探到人马座A*过去200多年的历史。密歇根州立大学的研究人员对银河系中心的超大质量黑洞有了突破性发现。他们的发现基于美国国家航空航天局(NASA)NuSTARX射线望远镜的数据,于6月11日在美国天文学会(AAS)第244次会议上公布。由于黑洞具有强大的引力场,连光都无法逃脱,因此研究黑洞面临着独特的挑战。为了了解这些神秘的天体,科学家们通常会研究它们的引力对附近恒星的影响以及邻近气体云的辐射等指标。NASANuSTAR天体学家的概念图NuSTAR轨道上的艺术家概念图。资料来源:NASA/JPL-加州理工学院黑洞研究创新项目格蕾丝-桑格-约翰逊(GraceSanger-Johnson)和杰克-尤特格(JackUteg)在物理与天文系助理教授张硕(ShuoZhang)的领导下,利用天基望远镜数十年的X射线数据,找到了更多揭示这些宇宙谜团的创新方法。格蕾丝和杰克的贡献令人无比自豪,"张说。"他们的工作充分体现了密苏里大学对开拓性研究和培养下一代天文学家的承诺。这项研究是MSU科学家如何揭开宇宙秘密的最好例证,使我们更接近于理解黑洞的本质和银河系中心的动态环境。"约翰逊分析了10年来的数据,寻找银河系中心黑洞人马座A*(SgrA*)的X射线耀斑,在此过程中,她发现了九个未被注意到的耀斑。这些耀斑是高能量光的剧烈爆发,为研究黑洞周围的环境提供了一个独特的机会,由于黑洞的引力惊人,人们通常看不到黑洞周围的环境。SgrA*是距离地球最近、活动最少的超大质量黑洞,因此,来自SgrA*及其耀斑的数据是目前已知的研究黑洞物理环境的方法之一。张说:"我们正坐在前排观察银河系中心这些独特的宇宙焰火。耀斑和焰火都能照亮黑暗,帮助我们观测到平时无法观测到的东西。这就是为什么天文学家需要知道这些耀斑发生的时间和地点,这样他们就可以利用这些光来研究黑洞的环境。"桑格-约翰逊精心筛选了NuSTAR(核光谱望远镜阵列)从2015年到2024年收集的十年X射线数据,NuSTAR是NASA的天基X射线望远镜之一。研究小组说,新发现的九个耀斑都为了解黑洞的环境和活动提供了宝贵的数据:"我们希望通过建立这个有关SgrA*耀斑的数据银行,我们和其他天文学家能够分析这些X射线耀斑的特性,并推断出超大质量黑洞极端环境内部的物理条件。"而MSU荣誉学院的本科生研究员Uteg则用一种类似于聆听回声的技术研究了黑洞的活动。Uteg分析了近20年的数据,目标是SgrA*附近被称为"桥"的巨型分子云。Uteg说:"与恒星不同,星际空间中的这些气体和尘埃云不会产生自己的X射线。因此,当X射线望远镜开始捕捉到来自"桥"的光子时,天文学家开始假设其来源。我们看到的亮度很可能是SgrA*过去X射线爆发的延迟反射。我们在2008年左右首次观测到亮度的增加。然后,在接下来的12年里,"桥"发出的X射线信号持续增加,直到2020年达到峰值亮度。"这种来自黑洞的"回波"光从SgrA*到分子云经过了数百年的时间,然后又经过了大约2.6万年的时间才到达地球。通过分析这种X射线回波,Uteg开始重建黑洞过去活动的时间轴,提供了仅靠直接观测无法获得的洞察力,分析过程使用了来自NuSTAR以及欧洲航天局X射线多镜(XMM)牛顿空间观测站的数据。Uteg说:"我们关注这个云团变亮的一个主要原因是,它能让我们确定过去SgrA*爆发的亮度。"在这些计算中,Uteg和MSU的团队确定,大约200年前,SgrA*在X射线中的亮度大约是我们今天看到的它的5个数量级。张说:"这是我们第一次为我们的超大质量黑洞周围的分子云构建了一个长达24年的可变性,这个分子云已经达到了它的X射线光度峰值。它使我们能够了解到SgrA*在大约200年前的活动情况。我们在MSU的研究团队将继续这种'天体考古游戏',进一步揭开银河系中心的神秘面纱。"虽然引发X射线耀斑的确切机制和黑洞的精确生命周期仍然是个谜,但MSU的研究人员相信,他们的发现将引发进一步的研究,并有可能彻底改变我们对这些神秘天体的认识。Uteg和Sanger-Johnson得到了NASANuSTAR客座观测计划的支持。编译自/scitechdaily...PC版:https://www.cnbeta.com.tw/articles/soft/1434874.htm手机版:https://m.cnbeta.com.tw/view/1434874.htm

封面图片

天文学家发现了一个围绕银河系黑洞的气体气泡

天文学家发现了一个围绕银河系黑洞的气体气泡据BGR报道,天文学家发现了一个围绕我们银河系黑洞的气体气泡。今年早些时候,天文学家为我们带来了SagittariusA(或简称Sgr.A*)的第一张图像。该图像很模糊,但我们第一次真正看到了将银河系固定在一起的超大质量黑洞。现在,天文学家说他们已经发现了关于我们的黑洞的其他奇特的东西。PC版:https://www.cnbeta.com/articles/soft/1326591.htm手机版:https://m.cnbeta.com/view/1326591.htm

封面图片

天文学家在银河系发现巨型黑洞 质量接近太阳 33 倍

天文学家在银河系发现巨型黑洞质量接近太阳33倍一个国际研究团队16日宣布,其成员借助“盖亚”空间探测器,在银河系发现一个巨型黑洞,其质量接近太阳的33倍。该研究成果发表在新一期国际《天文和天体物理学》周刊上。参与研究的以色列特拉维夫大学当天发表声明说,研究团队在整理分析欧洲航天局“盖亚”空间探测器获取的新一批数据时,发现恒星级黑洞“盖亚BH3”,并确定其质量接近太阳的33倍。

封面图片

天文学家发现银河系的死亡恒星的“墓地”

天文学家发现银河系的死亡恒星的“墓地”“银河地下世界”的第一张地图揭示了一个延伸到银河系高度三倍的“墓地”,几乎三分之一的天体已完全从银河系中抛出。悉尼大学悉尼天文学研究所的博士生DavidSweeney说:“这些死亡恒星的紧凑残骸显示出与可见星系根本不同的分布和结构。”他是最新一期《皇家天文学会月刊》上这篇论文的主要作者。PC版:https://www.cnbeta.com/articles/soft/1323849.htm手机版:https://m.cnbeta.com/view/1323849.htm

封面图片

翘速前进:天文学家解释银河系中心黑洞弯曲时空的方式

翘速前进:天文学家解释银河系中心黑洞弯曲时空的方式这幅艺术家绘制的插图显示了银河系中心超大质量黑洞和周围物质的横截面。中心的黑色球体代表黑洞的事件穹界,也就是不归点,任何东西,甚至光,都无法从这里逃逸。从侧面看旋转的黑洞,如图所示,周围的时空形状就像一个美式足球。两侧的黄橙色物质代表围绕黑洞旋转的气体。这些物质不可避免地向黑洞坠落,一旦落入足球形状的内部,就会穿过事件穹界。因此,足球形状内、事件视界外的区域被描绘成一个空腔。蓝色圆球表示从旋转黑洞两极射出的喷流。图片来源:NASA/CXC/M.Weiss天文学家称这个巨大的黑洞为人马座A*(简称SgrA*),它距离地球约26000光年,位于银河系的中心。黑洞有两个基本特性:质量(重量)和自旋(旋转速度)。确定这两个值中的任何一个,都能让科学家们对任何黑洞及其行为方式了如指掌。自旋测量技术一个研究小组采用了一种新方法,利用X射线和无线电数据,根据物质流向和流出黑洞的方式来确定SgrA*的旋转速度。他们发现SgrA*的旋转角速度--即每秒的旋转圈数--约为最大可能值的60%,而这是由于物质的运动速度无法超过光速而设定的极限。过去,不同的天文学家使用不同的技术对SgrA*的旋转速度进行了其他一些估计,结果从SgrA*完全不旋转到几乎以最大速度旋转不等。新研究的第一作者、宾夕法尼亚州立大学的露丝-戴利(RuthDaly)说:"我们的工作可能有助于解决银河系超大质量黑洞的旋转速度问题。结果表明,SgrA*的旋转速度非常快,这很有趣,而且影响深远。"人马座A*及其周围区域的钱德拉X射线图像。资料来源:NASA/CXC/威斯康星大学/Y.Bai,etal.快速旋转的影响旋转的黑洞在旋转时会拉动"时空"(时间和三维空间的组合)和附近的物质。旋转黑洞周围的时空也会被压扁。从顶部俯视黑洞,沿着黑洞产生的任何喷流桶,时空都是一个圆形。然而,从侧面看旋转的黑洞,时空的形状就像一个足球。旋转速度越快,足球就越扁平。黑洞的自旋可以作为一种重要的能量来源。旋转的超大质量黑洞在提取其自旋能量时会产生准直外流,即狭窄的物质束,如喷流,这就要求黑洞附近至少有一些物质。由于SgrA*周围的燃料有限,这个黑洞近千年来一直相对安静,喷流也相对较弱。然而,这项研究表明,如果斯格拉A*附近的物质数量增加,这种情况可能会改变。人马座A*的未来"旋转的黑洞就像发射台上的火箭,"来自加拿大温尼伯马尼托巴大学的合著者宾尼-塞巴斯蒂安说。"一旦物质足够接近,就好像有人给火箭加满了燃料,然后按下了'发射'按钮"。这意味着,将来如果黑洞附近物质的性质和磁场强度发生变化,黑洞自旋的巨大能量的一部分可能会驱动更强大的外流。这种源物质可能来自气体,也可能来自被黑洞引力撕裂的恒星残骸,如果该恒星游荡得离斯格拉A*太近的话。来自密歇根州立大学的合著者梅根-多纳休(MeganDonahue)说:"一个星系旋转的中心黑洞所产生的喷流会深刻影响整个星系的气体供应,从而影响恒星形成的速度,甚至影响恒星是否能够形成。在银河系黑洞周围的X射线和伽马射线中看到的'费米气泡'表明,黑洞在过去可能是活跃的。测量我们黑洞的自旋是对这种情况的重要检验。"为了确定SgrA*的自旋,作者使用了一种基于经验的理论方法,即"外流法",该方法详细说明了黑洞的自旋与其质量、黑洞附近物质的特性以及外流特性之间的关系。准直外流产生无线电波,而黑洞周围的气体盘则产生X射线辐射。利用这种方法,研究人员将钱德拉和VLA的数据与其他望远镜对黑洞质量的独立估计结合起来,对黑洞的自旋进行了约束。合著者之一、加拿大蒙特利尔麦吉尔大学的AnanLu说:"我们对SgrA*有特殊的看法,因为它是离我们最近的超大质量黑洞。虽然它现在很安静,但我们的工作表明,未来它将对周围的物质产生无比强大的冲击力。这可能发生在一千年或一百万年后,也可能发生在我们有生之年。"银河系中心的超大质量黑洞正在飞速旋转,以至于它把周围的时空扭曲成一个看起来像美式足球的形状。这一结果是利用美国宇航局钱德拉X射线天文台(太空中的X射线望远镜)和美国国家科学基金会甚大阵列(位于新墨西哥州的射电望远镜阵列)的数据得出的。资料来源:NASA/CXC/A.霍巴特描述这些结果的论文由露丝-戴利(RuthDaly)领衔撰写,发表在2024年1月出版的《英国皇家天文学会月刊》(MonthlyNoticesoftheRoyalAstronomicalSociety)上。...PC版:https://www.cnbeta.com.tw/articles/soft/1419317.htm手机版:https://m.cnbeta.com.tw/view/1419317.htm

封面图片

天文学家在银河系中心黑洞附近发现古老的河外星系恒星S0-6

天文学家在银河系中心黑洞附近发现古老的河外星系恒星S0-6银河系中心的黑洞人马座A*EHT协作小组/CCA4.0在银河系的正中央,有一个被称为人马座A*的超大质量黑洞。这是一个看似活跃的邻域,但人们认为那里并不经常诞生新的恒星,因为这个怪物对周围环境施加了极大的力量。宫城教育大学的天文学家们正在研究这些恒星是从哪里迁移过来的,他们发现其中一颗恒星的旅程比预期的要长很多。这颗恒星被称为S0-6,距离黑洞不到11光年。天文学家利用夏威夷的斯巴鲁望远镜观察它的动向已有八年之久。他们的研究发现,这颗恒星已经有100多亿年的历史了--而且最令人好奇的是,它还是一位旅行经验丰富的老者。斯巴鲁望远镜拍摄的银河系中心图像。超大质量黑洞人马座A*和恒星S0-6的位置已被标记宫城教育大学/NAOJS0-6恒星的化学成分与附近的其他恒星甚至银河系内的恒星并不匹配。相反,它与环绕我们银河系的小星系(如小麦哲伦云和人马座矮星系)中的恒星更为类似。研究人员推测,S0-6的母星系被银河系吞没似乎是经常发生的事情,尽管人们并不知道这些恒星会在如此深的银河系中被吞没。这个起源故事表明,这颗恒星至少经过了5万光年的旅行才到达现在的位置。但实际数字可能要高得多,因为它是经过数十亿年缓慢地螺旋上升,而不是向中心直线前进的。当然,发现S0-6的怪异之处并不是故事的结束--相反,这意味着天文学家将有动力对它进行更仔细的研究,以帮助回答更多的问题。"S0-6真的起源于银河系之外吗?它是否有同伴,还是独自旅行?通过进一步调查,我们希望能揭开超大质量黑洞附近恒星的神秘面纱"。这项研究的论文发表在《日本科学院院刊》(ProceedingsoftheJapanAcademy,Ser.B,PhysicalandBiologicalSciences)上。...PC版:https://www.cnbeta.com.tw/articles/soft/1403543.htm手机版:https://m.cnbeta.com.tw/view/1403543.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人