施一公、颜宁搞的结构生物学,类似于30年前的分子生物学研究。那时候如果克隆、测定一种重要蛋白质的基因序列,就可以发一篇高档论文。

施一公、颜宁搞的结构生物学,类似于30年前的分子生物学研究。那时候如果克隆、测定一种重要蛋白质的基因序列,就可以发一篇高档论文。我入学没多久就作为第N作者有一篇《自然》论文,就是因为我帮助做了测序。后来核酸测序自动化了,不可能有这样的好事。但研究分子生物学,获得基因序列只是起点,主要是后面的功能研究,测序自动化反而有利于这个领域的发展。施、颜则只会解析蛋白质晶体结构,有别人没有的条件(施从刘延东那里搞到3亿元经费买冷冻电镜,全世界独一家)、有廉价劳动力,不停地解析蛋白结构,解析一个就可发一篇高档论文,一年解析几个蛋白发几篇高档论文,本来可以这么一直混下去。不料谷歌人工智能程序今年把已知的上亿种蛋白质的结构全破解了,大部分结果和用实验获得的一样好,以后只会越来越好,而且开源谁都能用。于是颜宁的专业就悲剧了,当然不会马上失业,但没前途是肯定的。而她除了解析蛋白结构又不会干别的,没法转行做功能生物学研究,毅然回国当学官、学商是最佳选择。

相关推荐

封面图片

科学家用新的无细胞蛋白质结晶方法推进结构生物学的发展

科学家用新的无细胞蛋白质结晶方法推进结构生物学的发展东京理工大学开发了一种新的无细胞蛋白质结晶(CFPC)方法,包括直接的蛋白质结晶,是结构生物学领域的一个重大进步。这项技术将使我们能够分析用传统方法无法研究的不稳定的蛋白质。分析这些将增加我们对细胞过程和功能的了解。PC版:https://www.cnbeta.com/articles/soft/1323455.htm手机版:https://m.cnbeta.com/view/1323455.htm

封面图片

麻省理工学院的生物学家对重复的蛋白质序列有了新的认识

麻省理工学院的生物学家对重复的蛋白质序列有了新的认识计算分析显示,许多重复序列在不同的蛋白质中是共享的,并且在从细菌到人类的物种中是相似的。大约70%的人类蛋白质包括至少一个由单一氨基酸重复多次组成的序列,其中还夹杂着一些其他氨基酸。这些"低复杂性区域"(LCRs)也存在于大多数其他生物体的蛋白质中。PC版:https://www.cnbeta.com/articles/soft/1325147.htm手机版:https://m.cnbeta.com/view/1325147.htm

封面图片

东吴证券:合成生物学优势显著,政策、资本大力支持

东吴证券:合成生物学优势显著,政策、资本大力支持东吴证券研报指出,合成生物学优势显著,政策、资本大力支持。1)合成生物学生产过程中产生的污染相对化学合成较少。在全球变暖,对新生产方式迫切需求的情况下,合成生物制造有望成为最优解;2)合成生物学原料更加易得;3)合成生物学制造成本更低。同类产品由于生物发酵所需反应步骤少,原料成本低,叠加无需耗费大量资金处理污染,综合成本远低于化学合成;4)合成生物学生产效率更高。合成同样数量的蛋白质,饲养牲畜需要占用大量土地等自然资源,而合成生物学仅需发酵罐,微生物繁衍速度也高于牲畜家禽,节约大量时间成本。建议关注:川宁生物、华恒生物、富祥药业等。

封面图片

来自海底的新型细菌蛋白为气候和天体生物学提供了新的线索

来自海底的新型细菌蛋白为气候和天体生物学提供了新的线索墨西哥湾北部海底岩石下的甲烷包合物(白色冰状物质)。此类沉积物表明甲烷和其他气体穿过海底并进入海洋。图片来源:NOAA但到目前为止,甲烷气体如何在海底保持稳定的生物过程几乎完全未知。在一项突破性研究中,佐治亚理工学院研究人员组成的跨学科团队发现了一类以前未知的细菌蛋白,它们在甲烷包合物的形成和稳定性中发挥着至关重要的作用。由地球与大气科学学院副教授JenniferGlass和化学与生物化学学院教授兼Sepcic-Pfeil主席RaquelLieberman领导的研究小组表明,这些新型细菌蛋白能够有效抑制甲烷包合物的生长与目前用于钻井的商业化学品一样,但无毒、环保且可扩展。他们的研究由美国宇航局资助,为在太阳系中寻找生命提供了信息,并且还可以提高天然气运输的安全性。这项研究发表在《PNASNexus》杂志上,强调了基础科学在研究地球自然生物系统中的重要性,并强调了跨学科合作的好处。格拉斯说:“我们想了解这些地层如何在海底保持稳定,以及到底是什么机制有助于它们的稳定。这是以前没有人做过的事情。”筛选沉积物这项工作首先是团队检查了格拉斯从俄勒冈州海岸附近的海底采集的粘土状沉积物样本。格拉斯假设沉积物中含有影响甲烷笼形物生长的蛋白质,这些蛋白质类似于鱼类中众所周知的抗冻蛋白质,有助于它们在寒冷的环境中生存。抑制剂对甲烷笼形壳的形态影响。左图:一幅卡通图,展示了在使用和不使用抑制剂的情况下,在包合物生长开始时和3小时时甲烷包合物的形成。右:每个生长阶段的实验甲烷包合物的代表性照片,按处理标记。图片来源:佐治亚理工学院但为了证实她的假设,格拉斯和她的研究团队首先必须从沉积物中包含的数百万个潜在目标中识别出候选蛋白质。然后他们需要在实验室中制造蛋白质,尽管不了解这些蛋白质的行为方式。而且,之前没有人研究过这些蛋白质。格拉斯找到了利伯曼,他的实验室研究蛋白质的结构。第一步是利用DNA测序与生物信息学相结合来识别沉积物中所含蛋白质的基因。利伯曼实验室的研究员、该论文的第一作者达斯汀·华德(DustinHuard)随后制备了可能与甲烷包合物结合的候选蛋白质。Huard使用X射线晶体学来确定蛋白质的结构。在实验室中创造海底条件华德将候选蛋白质交给了前博士生阿比盖尔·约翰逊(AbigailJohnson)。格拉斯实验室的学生和该论文的共同第一作者,现在是佐治亚大学的博士后研究员。为了测试这些蛋白质,约翰逊在实验室中重现了海底的高压和低温,自己形成了甲烷包合物。约翰逊与土木与环境工程学院副教授戴盛合作,从头开始建造了一个独特的压力室。约翰逊将蛋白质放入压力容器中,并调整系统以模拟包合物形成所需的压力和温度条件。通过用甲烷对容器加压,约翰逊将甲烷压入液滴中,从而形成甲烷包合物结构。然后,她测量了包合物消耗的气体量(衡量包合物形成速度和数量的指标),并在有蛋白质存在和无蛋白质存在的情况下进行测量。约翰逊发现,使用笼形结合蛋白,消耗的气体更少,并且笼形化合物在更高的温度下熔化。当研究小组证实这些蛋白质会影响甲烷包合物的形成和稳定性后,他们在物理学院教授James(JC)Gumbart的帮助下,利用Huard的蛋白质晶体结构进行了分子动力学模拟。模拟使研究小组能够识别蛋白质与甲烷包合物结合的特定位点。一个令人惊讶的新颖系统这项研究揭示了对蛋白质结构和功能的意想不到的见解。研究人员最初认为该蛋白质中与鱼类抗冻蛋白相似的部分将在包合物结合中发挥作用。令人惊讶的是,蛋白质的这一部分没有发挥作用,并且完全不同的机制指导了相互作用。他们发现这些蛋白质不与冰结合,而是与包合物结构本身相互作用,指导其生长。具体来说,蛋白质中与抗冻蛋白具有相似特性的部分被埋藏在蛋白质结构中,反而起到了稳定蛋白质的作用。研究人员发现,这些蛋白质在修饰甲烷笼形物方面比过去测试过的任何抗冻蛋白质表现更好。它们的性能即使不是更好,也与目前用于钻井的有毒商业包合物抑制剂一样好,这些抑制剂对环境造成严重威胁。防止天然气管道中形成笼形物是一个价值数十亿美元的产业。如果这些可生物降解的蛋白质可以用来防止灾难性的天然气泄漏,那么将大大降低环境破坏的风险。“我们很幸运,这确实有效,因为尽管我们根据这些蛋白质与抗冻蛋白质的相似性来选择这些蛋白质,但它们是完全不同的,”约翰逊说。“它们在自然界中具有相似的功能,但通过完全不同的生物系统实现这一点,我认为这确实令人兴奋。”甲烷包合物可能存在于整个太阳系中——例如,在火星的地下,以及太阳系外层的冰冷卫星上,例如木卫二。研究小组的发现表明,如果微生物存在于其他行星体上,它们可能会产生类似的生物分子,以将液态水保留在包合物的通道中,从而维持生命。“我们仍然对地球上的基本系统了解很多,”华德说。“这是佐治亚理工学院的伟大之处之一——不同的社区可以聚集在一起进行非常酷的、意想不到的科学研究。我从没想过我会从事天体生物学项目,但我们来了,而且我们非常成功。”...PC版:https://www.cnbeta.com.tw/articles/soft/1387331.htm手机版:https://m.cnbeta.com.tw/view/1387331.htm

封面图片

中信证券:看好合成生物学为氨基酸行业带来全面变革

中信证券:看好合成生物学为氨基酸行业带来全面变革中信证券研报表示,看好合成生物学为氨基酸行业带来全面变革。需求侧,豆粕减量替代趋势下低蛋白日粮技术驱动氨基酸长期需求;供给侧,合成生物学技术助力构建合成氨基酸的高产菌株,建议关注合成生物学对于蛋氨酸和小品种氨基酸的影响。蛋氨酸方面,全发酵法有望颠覆蛋氨酸行业格局;小品种氨基酸方面,合成生物学降本促进需求增长的同时带来国产替代机遇。看好布局氨基酸且具备生物制造全流程能力的合成生物学企业。

封面图片

破解细胞密码:蛋白质折叠与疾病疗法的新见解

破解细胞密码:蛋白质折叠与疾病疗法的新见解马萨诸塞大学阿默斯特分校(UMassAmherst)的一项突破性研究破解了附着在蛋白质上的糖是如何引导蛋白质正确折叠的,为治疗由蛋白质错误折叠引起的疾病提供了可能。研究小组的方法揭示了一种特定酶在折叠过程中发挥的关键作用。这种蛋白质(红色)被糖(蓝色和绿色)糖苷化。资料来源:马萨诸塞大学阿默斯特分校揭开丝氨酸的神秘面纱这项发表在《分子细胞》(MolecularCell)杂志上的研究探讨了与多种疾病有关的丝氨酸蛋白家族成员。这项研究首次探讨了附着在丝蛋白上的碳水化合物的位置和组成如何确保它们正确折叠。从肺气肿、囊性纤维化到阿尔茨海默病等严重疾病,都可能因细胞对蛋白质折叠的监督出错而导致。找出负责高保真折叠和质量控制的糖蛋白代码,可能是针对多种疾病的药物疗法的一种很有前景的方法。科学家们曾一度认为,DNA是支配生命的唯一代码,一切都受DNA的四个构建模块--A、C、G和T--如何组合和重组的支配。但近几十年来,人们逐渐认识到还有其他代码在起作用,尤其是在人体细胞的蛋白质工厂--内质网(ER)--这个膜封闭的腔室中,蛋白质折叠的起始点就是内质网。约有7000种不同的蛋白质在ER中成熟,占人体所有蛋白质的三分之一。这些分泌蛋白统称为"分泌体"--负责人体从酶到免疫和消化系统的一切功能,必须正确形成才能使人体正常运作。蛋白伴侣在蛋白质折叠中的作用被称为"伴侣"的特殊分子有助于将蛋白质折叠成最终形状。它们还能帮助识别折叠不完全正确的蛋白质,为其重新折叠提供额外的帮助,或者,如果它们折叠错误得无可救药,则在它们造成损害之前将其锁定并加以破坏。然而,作为细胞质量控制部门的一部分,伴侣系统本身有时也会失效,一旦失效,就会给我们的健康带来灾难性的后果。发现ER中基于碳水化合物的伴侣系统要归功于麻省大学阿默斯特分校生物化学和分子生物学教授、本文资深作者之一丹尼尔-希伯特(DanielHebert)在20世纪90年代作为博士后开展的开创性工作。"我们现在拥有的工具,包括阿默斯特大学应用生命科学研究所的糖蛋白组学和质谱分析技术,让我们能够回答25年来一直悬而未决的问题,"Hebert说。"这篇新论文的第一作者凯文-盖伊(KevinGuay)所做的事情是我刚开始工作时梦寐以求的。"在这些悬而未决的问题中,最迫切的问题是:伴侣如何知道7000种不同的类似折纸的蛋白质何时正确折叠?理解蛋白质质量控制的创新我们现在知道,答案涉及一种名为UGGT的"ER守门员"酶,以及大量与蛋白质氨基酸序列中特定位点相连的碳水化合物标签,即N-糖。盖伊正在完成马萨诸塞大学阿默斯特分校分子细胞生物学项目的博士学业,他重点研究了两种特殊的哺乳动物蛋白质,即α-1抗胰蛋白酶和抗凝血酶。他和他的合著者利用CRISPR编辑细胞,修改了ER伴侣网络,以确定N-聚糖的存在和位置如何影响蛋白质折叠。他们观察了疾病变体被ER守门员UGGT识别的过程,为了更仔细地观察,他们利用质谱技术开发了一系列创新的糖蛋白组学技术,以了解蛋白质表面的聚糖发生了什么变化。他们发现,UGGT酶会在特定位置用糖"标记"折叠错误的蛋白质。这是一种代码,然后伴侣可以通过读取这种代码来确定折叠过程中哪里出错以及如何修复。影响和未来方向盖伊说:"这是我们第一次能够看到UGGT在人体细胞制造的蛋白质上添加糖以进行质量控制的位置。我们现在有了一个平台,可以扩展我们对糖标签如何将蛋白质送入进一步质量控制步骤的理解,我们的工作表明,UGGT是靶向药物治疗研究的一个很有前景的途径。""这项研究最令人兴奋的地方在于",马萨诸塞大学阿默斯特分校生物化学与分子生物学杰出教授、论文共同作者之一莱拉-吉拉什(LilaGierasch)说,"我们发现聚糖在ER中充当了蛋白质折叠的代码。UGGT所扮演角色的发现为未来了解并最终治疗由错误折叠蛋白质导致的数百种疾病打开了一扇大门"。参考文献《ER伴侣使用蛋白质折叠和质量控制糖代码》,作者:KevinP.Guay、HaipingKe、NathanP.Canniff、GracieT.George、StephenJ.Eyles、MalaiyalamMariappan、JosephN.Contessa、AnneGershenson、LilaM.Gierasch和DanielN.Hebert,2023年12月4日,《分子细胞》。DOI:10.1016/j.molcel.2023.11.006编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1403363.htm手机版:https://m.cnbeta.com.tw/view/1403363.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人