研究人员发现了一种令人惊讶的简单方法来制造低温冷却器
研究人员发现了一种令人惊讶的简单方法来制造低温冷却器低温冷却的实际应用数量惊人。它被用来保存组织、卵子、精子甚至胚胎。它使CAT扫描仪、欧洲核子研究中心的大型粒子加速器和某些磁悬浮系统成为可能。它有数以百计的工程应用,为詹姆斯-韦伯太空望远镜(JamesWebbSpaceTelescope)提供了探测太空深处的非凡能力,也许有一天会成为实现核聚变动力或量子计算机的关键。在超低温条件下,一些奇怪的物理学原理开始发挥作用。例如,超导性允许电流以零电阻通过某些材料。超流动性允许某些液体(如氦气)在没有任何粘度的情况下流动,此时它似乎开始无视正常规则,爬上并越过容器的边沿。接近绝对零度时,量子现象会减慢到我们可以实际利用它们的程度,可以开始得到玻色-爱因斯坦凝聚体,在这种凝聚体中,原子团不再像个体那样行动,而是聚集在一起,并同步进入相同的量子态,开始像'超级原子'那样行动。但在绝对零度附近工作的一个问题是,达到这一温度既昂贵又耗时。40多年来,脉冲管冰箱(PTR)一直是达到4ºK(-452ºF,-269ºC)或绝对零度以上四度温度的首选技术。它是一种简单得令人惊讶的机器,工作原理与厨房里的冰箱大致相同。PTR使用的是压缩气体,气体膨胀时会产生热量。不过,PTR使用的不是氟利昂或异丁烷,而是氦气--这使它能够将物体冷却到物理学的理论极限。它可以工作,但要达到理想的冷却效果,需要花费数天时间和大量能源。美国国家标准与技术研究院(NIST)研究员瑞安-斯诺德格拉斯(RyanSnodgrass)和他的团队研究了PTR的工作原理,试图找出提高其效率的方法。他们发现,所需要的是一个令人惊讶的简单修复方法。研究小组发现,PTR在接近绝对零度的温度下工作得非常好,但在室温下,也就是必须开始冷却的温度下,它的效率却很低。他们发现,在较高温度下,氦气的压力非常高,以至于氦气一直被分流到溢流阀中,而没有起到任何冷却作用。通过调换压缩机和冰箱之间的机械连接,然后调整阀门,使其在流程开始时处于大开状态,并在冷却过程中逐渐关闭,他们可以实现更高的效率,并将冷却速度提高一半到四分之一,而这一切都不会浪费宝贵的氦气。据该研究小组称,如果新型冰箱的原型能够投放市场,取代现有设备,那么每年可节省2700万瓦特的电能,为全球节约3000万美元的电费,以及足够填满5000个奥林匹克游泳池的冷却水。这将大大改变一系列超冷技术的成本/效益等式。这项研究发表在《自然通讯》上。...PC版:https://www.cnbeta.com.tw/articles/soft/1433042.htm手机版:https://m.cnbeta.com.tw/view/1433042.htm