数据与AI公司Databricks推出通用目的DBRX大语言模型(LLM),按标准基准来看,其性能超越所有现存开源模型。该公司C

None

相关推荐

封面图片

微软研究院发布了Orca 2 LLM 其性能可媲美大语言模型

微软研究院发布了Orca2LLM其性能可媲美大语言模型微软在一篇博文中表示,Orca2是专为小规模LM设计的,但仍可用于回答LLM等复杂问题。Orca2有两种大小(70亿和130亿个参数),部分是利用今年早些时候微软帮助Meta推出的Llama2LLM制作的。该公司"根据量身定制的高质量合成数据"对基于Llama2的模型进行了微调。微软表示,这使得Orca2模型在处理问题时能够与其他"5-10倍大"的语言模型相媲美:Orca2使用扩展的、高度定制的合成数据集进行训练。这些训练数据的生成,向Orca2传授了各种推理技术,如逐步处理法、回忆然后生成法、回忆-推理-生成法、提取-生成法和直接回答法,同时还教会它针对不同的任务选择不同的解决策略。Orca2模型与Llama2和WizardLM等大型语言模型进行了一系列基准测试,测试内容包括"语言理解、常识推理、多步骤推理、数学问题解决、阅读理解"等。微软官方博客称:我们的初步测试结果表明,Orca2的性能大大超越了类似规模的模型。它还达到了类似或优于至少比它大10倍的模型的性能水平,展示了为更小的模型配备更好的推理能力的潜力。虽然微软承认Orca2确实存在局限性,但迄今为止的测试显示了"未来进步的潜力"。微软将把Orca2作为一个开源项目发布,以便其他人也能对其进行开发。...PC版:https://www.cnbeta.com.tw/articles/soft/1398829.htm手机版:https://m.cnbeta.com.tw/view/1398829.htm

封面图片

人工智能(AI)社区平台HuggingFace(抱抱脸)发布开源大语言模型(LLM)排行榜。据排行榜,中国模型名列前茅。该公司部

封面图片

见鬼了,谷歌居然开源LLM模型了,Meta要慌了。#ai##llm#

见鬼了,谷歌居然开源LLM模型了,Meta要慌了。Gemma采用了和Gemini一样技术的开源LLM,同时质量也比同规模的模型要强。下面是一些要点:◈两种尺寸的模型权重:Gemma2B和Gemma7B。每种尺寸都有预训练和指导调整的变体。◈一个生成式人工智能工具包,为使用Gemma创建更安全的人工智能应用提供指导和必要工具。◈通过原生Keras3.0为所有主要框架(JAX、PyTorch和TensorFlow)提供推理和监督微调(SFT)的工具链。◈准备好的Colab和Kaggle笔记本,以及与HuggingFace、MaxText、NVIDIANeMo和TensorRT等流行工具的集成,使得开始使用Gemma变得非常容易。◈预先训练和经过调整的Gemma模型可以在您的笔记本电脑、工作站或GoogleCloud上运行,并可以轻松部署到VertexAI和GoogleKubernetesEngine(GKE)。◈跨多个人工智能硬件平台的优化确保了行业领先的性能,包括NVIDIAGPU和GoogleCloudTPU。◈允许所有组织进行负责任的商业使用和分发,无论规模大小。◈未来还会发布Gemma更大模型变体。了解更多:

封面图片

Mozilla最近推出了一个名为Llamafile的开源项目,其目的是让大众更容易使用开源的大语言模型(LLM)。

Mozilla最近推出了一个名为Llamafile的开源项目,其目的是让大众更容易使用开源的大语言模型(LLM)。Llamafile通过将LLM聊天机器人的全部复杂架构简化为一个可在六个操作系统上运行的单一可执行文件。它结合了和两个开源项目的功能。Mozilla希望Llamafile可以降低开发者和普通用户使用开源LLM的门槛,让更多人参与开源AI的发展,为商业化的封闭源LLM提供一个开源的可选方案。Llamafile也代表了“本地AI”的理念,即AI运行在本地设备上,由用户完全控制,不依赖网络,可以保护隐私。这有助于开源AI抵制大公司对AI的控制。

封面图片

:用于大规模语言模型(LLM)训练的原生PyTorch库

封面图片

Poly:用Rust编写的GPU加速语言模型(LLM)服务器,可高效提供多个本地LLM模型的服务。

:用Rust编写的GPU加速语言模型(LLM)服务器,可高效提供多个本地LLM模型的服务。主要提供:为多个本地LLM模型提供高性能、高效和可靠的服务可选择通过CUDA或Metal进行GPU加速可配置的LLM完成任务(提示、召回、停止令牌等)通过HTTPSSE流式传输完成响应,使用WebSockets聊天使用JSON模式对完成输出进行有偏差的采样使用向量数据库(内置文件或Qdrant等外部数据库)进行记忆检索接受PDF和DOCX文件并自动将其分块存储到内存中使用静态API密钥或JWT标记确保API安全简单、单一的二进制+配置文件服务器部署,可水平扩展附加功能:用于轻松测试和微调配置的Web客户端用于本地运行模型的单二进制跨平台桌面客户端

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人