新方法“近乎完美”控制单原子英国伦敦大学学院工程师和物理学家开发出一种新方法,首次成功在阵列中可靠地定位单个原子,其接近100%

None

相关推荐

封面图片

物理学家发明测量单个原子三维位置的巧妙新方法

物理学家发明测量单个原子三维位置的巧妙新方法新方法可通过单个图像确定原子的所有三个空间坐标。这种由波恩大学和布里斯托尔大学开发的方法是基于一种巧妙的物理原理。这项研究最近发表在专业期刊《物理评论A》上。测量第三维度的挑战在生物课上用显微镜观察过植物细胞的人可能都能回忆起类似的情形。很容易看出,某个叶绿体位于细胞核的上方和右侧。但它们是否位于同一平面上呢?然而,一旦调整显微镜的焦距,就会发现细胞核的图像变得更加清晰,而叶绿体的图像却变得模糊不清。其中一个一定比另一个高一点,一个比另一个低一点。不过,这种方法无法精确显示它们的垂直位置。实际情况就是这样:各种"哑铃"的旋转方向不同,表明原子位于不同的平面上。图片来源:IAP/波恩大学如果要观察单个原子而不是细胞,原理也非常相似。所谓的量子气体显微镜可用于此目的。它可以直接确定原子的x坐标和y坐标。然而,要测量其Z坐标(即到物镜的距离)则要困难得多:为了确定原子位于哪个平面上,必须拍摄多幅图像,并在不同平面上移动焦点。这是一个复杂而耗时的过程。把圆点变成哑铃波恩大学应用物理研究所(IAP)的TangiLegrand解释说:"我们现在已经开发出一种方法,可以一步完成这一过程。为了实现这一目标,我们使用了一种早在上世纪90年代就已在理论上被人们所熟知,但尚未在量子气体显微镜中使用过的效应"。要对原子进行实验,首先必须将其大幅冷却,使其几乎不动。然后,可以将它们困在激光的驻波中。然后,它们就会滑入波谷中,就像鸡蛋坐在鸡蛋盒里一样。一旦被困住,为了显示它们的位置,就将它们暴露在另一束激光下,这束激光会刺激它们发光。由此产生的荧光在量子气体显微镜下显示为一个略微模糊的圆形斑点。量子气体显微镜产生的原子图像通常是一个圆形、略微模糊的斑点。研究人员将其扭曲成哑铃状(图片显示的是理论预测)。哑铃指向的方向表示z坐标。图片来源:IAP/波恩大学安德烈亚-阿尔贝蒂博士解释说:"我们现在已经开发出一种特殊的方法,可以使原子发出的光的波面变形。变形的波面在照相机上产生了一个围绕自身旋转的哑铃形状,而不是典型的圆形斑点。这个哑铃指向的方向取决于光线从原子到照相机的距离"。这位研究员目前已从IAP转到位于加兴的马克斯-普朗克量子光学研究所,他也参与了这项研究。"因此,哑铃的作用有点像罗盘上的指针,让我们可以根据它的方向读出z坐标,"迪特尔-梅斯赫德(DieterMeschede)博士说。波恩大学跨学科研究领域"物质"的成员之一。对量子力学实验非常重要通过这种新方法,只需一张图像就能精确测定原子在三维空间中的位置。例如,如果你想用原子进行量子力学实验,这一点就非常重要,因为通常必须能够精确控制或跟踪原子的位置。这样,研究人员就可以使原子以所需的方式相互影响。此外,这种方法还可用于帮助开发具有特殊特性的新型量子材料。布里斯托尔大学的CarrieWeidner博士解释说:"例如,我们可以研究原子按一定顺序排列时会产生哪些量子力学效应。"这将使我们能够在一定程度上模拟三维材料的特性,而无需合成它们"。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1423110.htm手机版:https://m.cnbeta.com.tw/view/1423110.htm

封面图片

物理学家发现原子核基态的分子结构

物理学家发现原子核基态的分子结构中国科学院近代物理研究所(IMP)的科学家及其合作者最近在原子核基态中发现了一种分子型结构。该研究成果发表在《物理评论快报》上,并作为"物理学特写"文章进行了重点报道。原子核是一个由质子和中子组成的量子多体系统,小得令人难以置信(只有原子的万分之一),但它却容纳了原子总质量的99.9%以上。核子之间的相互作用产生了各种有趣的核结构,从球形核到变形核,甚至是表面密度稀疏的中子晕。在这些结构中出现的团簇结构是一个引人入胜的现象。反运动学中的簇敲除反应示意图。资料来源:李鹏杰团簇结构的意义原子核的基态很少出现簇状结构。关于基态团簇结构的讨论可以追溯到1938年,当时理论物理学家通过分析α共轭核的结合能,提出在铍-8、碳-12和氧-16等原子核的基态中可能存在类似α分子的团簇结构。然而,由于经典壳模型的单粒子描述很受欢迎,这一理论假设仍未得到验证。IMP的科学家及其合作者利用一种涉及逆运动学敲除反应的新颖实验方法,验证了富中子原子核铍-10的基态存在分子型结构。该实验在日本理化学研究所西奈中心的放射性同位素束工厂(RIBF)进行。在实验中,铍-10的次级束以一半光速轰击一个2毫米厚的固体氢靶。束缚在铍-10原子核内的α原子团被质子击出,几乎没有动量转移到残余原子核上,从而保留了铍-10基态原子团结构的信息。铍-10原子核的类分子结构。资料来源:IMP李鹏杰证实长期存在的假设实验结果表明,敲除反应的实验截面与微观模型下的理论预测之间存在显著的一致性。这一验证支持了关于铍-10基态分子态结构的长期假说,即铍-10形成了一个α-α哑铃形内核,两个价中子垂直于内核轴旋转。论文第一作者、来自IMP的李鹏杰博士说:"类似的结构在原子尺度上也能发现,但在原子核的基态中却异常罕见。"这项研究首次为原子核基态分子态结构的理论描述提供了实验证据,并为进一步探索富中子核基态α簇结构的演化铺平了道路。...PC版:https://www.cnbeta.com.tw/articles/soft/1401029.htm手机版:https://m.cnbeta.com.tw/view/1401029.htm

封面图片

德国物理学家找到在水中写字的独特方法

德国物理学家找到在水中写字的独特方法 使用离子交换珠作为“笔”在水中绘制的图案图片来源:美国科技博客媒体ArsTechnica众所周知,水不是一种书写媒介,这是因为墨水不断地移动和旋转,很快就会在水中扩散开,无法形成结构。以前的研究可使用扫描探针光刻技术在浸没于液体中的自组装单分子膜上“书写”;现在也有商用石板可供潜水员进行水下写字。然而,所有这些方法仍然依赖于衬底。此次,研究团队想要设计出一种真正“在液体中写字”的方法。这样的方法必须能防止绘制线条快速扩散,并且书写者需要一支非常小的“笔”,当它在液体介质中移动时,不会激起太多的湍流。因为在液体中,移动的对象越小,产生的漩涡或涡流就越少。团队的解决方案是:将墨水直接放入水中,并使用由离子交换树脂材料制成的微珠作为笔,直径在20—50微米之间,完全不会产生漩涡。这种珠子通过改变水的局部酸碱度来“写字”,能将墨水颗粒吸引到这些区域。当倾斜水槽时,珠子中的墨水颗粒就会沿着轨迹移动,描绘出想要的字母或字符,因此在水中“写”一封信也是有可能的。在一个硬币大小的水槽中,研究人员绘制出简单的像房子一样的图案,大小和18号字体的“I”字符一样大,能在显微镜下观察。研究人员表示,尽管这项技术还处于起步阶段,但它开辟了一系列可能性,例如,该技术有可能扩展到其他类型的笔,通过激光加热的笔可以自己在水中穿行;这种机制也可以用来在流体中产生高度复杂的密度图案。在历史长河中,艺术的演变源远流长,而这种新的方法为书写、绘画和流体构图开辟了一条“多才多艺”的途径,甚至可应用于微尺度上。...PC版:https://www.cnbeta.com.tw/articles/soft/1383959.htm手机版:https://m.cnbeta.com.tw/view/1383959.htm

封面图片

物理学家发现更有效和更环保的餐具清洁方法

物理学家发现更有效和更环保的餐具清洁方法通常情况下,传统的洗碗机并不能杀死留在盘子、碗和餐具上的所有有害微生物。它们还需要很长的循环时间,耗费大量的电力。此外,泵入和泵出的洗涤剂被释放到水源中,污染了环境。一个更有效、更环保的解决方案可以由高温蒸汽洗碗机提供。在2022年8月30日AIP出版社出版的《洗碗机。他们发现,它在短短25秒内就能杀死盘子里99%的细菌。流体物理学》上发表的一项研究中,来自多特蒙德工业大学和慕尼黑工业大学的研究人员模拟了这样一台一个理想化的洗碗机模型由一个具有坚实侧壁、顶部开口和底部喷嘴的盒子表示。一个覆盖着耐热菌种的盘子被放在喷嘴的正上方。一旦板子在模拟中达到一定的阈值温度,就可以认为微生物被灭活了。“蒸汽以非常高的速度从喷嘴出来。我们可以看到冲击,产生的湍流有涡流和漩涡,”研究作者、多特蒙德工业大学的NatalieGermann说。“我们还包括热传递,它显示了模拟箱中的热量变化和固体表面的凝结情况。”由蒸汽的高速产生的冲击波在洗碗机的表面上被反射。在这项工作中,该团队专注于细菌。然而,冲击波在未来可以被用来有效地清除食物残渣。“我们的研究有助于确定冲击的强度、冲击的位置以及在洗碗机内产生的涡流,”研究作者、慕尼黑工业大学的LailaAbu-Farah说。“这些东西对于安排洗碗机内的物品或物体以及喷嘴的位置和方向非常重要。”虽然模拟显示了细菌的快速灭活,但洗碗机的实际应用将包括一个以上的盘子,因此需要更多时间。然而,科学家们认为它仍然会比传统技术更快、更有效。尽管高温蒸汽洗碗机最初会花费更多,但从长远来看,它将会在水、电和洗涤剂方面得到节省。它非常适合用于必须满足高卫生标准的场所,包括餐馆、酒店和医院。“我们确认,使用高温蒸汽的洗碗机应用很有前景,”Germann说。“这是第一项将流体动力学和热传递与相变和细菌灭活相结合的工作。因此,它为未来的计算研究和进一步的技术工作打下了基础。”...PC版:https://www.cnbeta.com/articles/soft/1311507.htm手机版:https://m.cnbeta.com/view/1311507.htm

封面图片

物理学家首次探测到由粒子对撞机制造的亚原子中微子

物理学家首次探测到由粒子对撞机制造的亚原子中微子这种粒子在1956年首次被发现,并在使恒星燃烧的过程中发挥了关键作用。这一发现有望帮助物理学家了解宇宙中最丰富的粒子的性质。这项工作还可以揭示出宇宙中微子的情况,这些中微子会长途跋涉并与地球发生碰撞,为了解宇宙的遥远部分提供了一个窗口。这是"前向搜索实验"(FASER)的最新成果,这是一个由国际物理学家小组设计和建造的粒子探测器,安装在瑞士日内瓦的欧洲核子研究理事会(CERN)。在那里,FASER检测由欧洲核子研究中心的大型强子对撞机产生的粒子。加州大学欧文分校粒子物理学家和FASER合作项目共同发言人乔纳森-冯(JonathanFeng)说:"我们从一个全新的来源--粒子对撞机当中发现了中微子,在那里你有两束粒子以极高的能量砸在一起。"他发起了这个项目,UCI和21个合作机构的80多名研究人员参与其中。FASER粒子探测器位于欧洲核子研究中心大型强子对撞机的地下深处,大部分是用欧洲核子研究中心其他实验的备件建造的。信用:照片由欧洲核子研究中心提供欧洲核子研究中心的粒子物理学家布莱恩-彼得森周日代表FASER在意大利举行的第57届RencontresdeMoriond弱电相互作用和统一理论会议上宣布了这些结果。中微子是由已故UCI物理学家和诺贝尔奖得主FrederickReines在近70年前共同发现的,是宇宙中最丰富的粒子,"对建立粒子物理学的标准模型非常重要,"FASER联合发言人JamieBoyd说。"但是在对撞机上产生的中微子从未被实验所探测到。"自从Reines和UCI物理学和天文学教授HankSobel等人的开创性工作以来,物理学家研究的大多数中微子都是低能量的中微子。但是FASER检测到的中微子是在实验室中产生的最高能量的中微子,与深空粒子在我们的大气层中引发巨大的粒子雨时发现的中微子相似。Boyd说:"它们能以我们无法了解的方式告诉我们关于深空的情况。大型强子对撞机中的这些非常高能量的中微子对于理解粒子天体物理学中真正令人兴奋的观察结果非常重要。"FASER本身在粒子探测实验中是新的和独特的。与欧洲核子研究中心的其他探测器相比,如ATLAS,它有几层楼高,重达数千吨,而FASER大约只有一吨,可以整齐地放在欧洲核子研究中心的一个小侧隧道内。而且,它只花了几年时间就利用其他实验的备件进行设计和建造。UCI实验物理学家戴夫-卡斯帕说:"中微子是大型强子对撞机上更大的实验无法直接探测到的唯一已知粒子,所以FASER的成功观测意味着对撞机的全部物理学潜力终于被开发出来了。"除了中微子,FASER的另一个主要目标是帮助识别构成暗物质的粒子,物理学家认为暗物质包括宇宙中的大部分物质,但他们从未直接观察到。FASER尚未发现暗物质的迹象,但随着大型强子对撞机将在几个月后开始新一轮的粒子对撞,该探测器已经准备好记录任何出现的暗物质。...PC版:https://www.cnbeta.com.tw/articles/soft/1350507.htm手机版:https://m.cnbeta.com.tw/view/1350507.htm

封面图片

灌肠新方法吗?

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人