《自然》子刊报道哈工程在拓扑光子学领域的研究成果

《自然》子刊报道哈工程在拓扑光子学领域的研究成果据哈工大官微消息,近日,哈尔滨工程大学物理与光电工程学院超材料与光纤器件课题组利用连续扭角外尔超晶体,在实验上观测到了费米弧随角度重构。这一工作揭示了费米弧非周期散射的独特现象,为连续调控费米弧提供了可能,为新型器件设计、信息调控方式提供了可参考的途径。研究成果以“扭角光子外尔超晶体与非周期费米弧散射”(TwistedphotonicWeylmeta-crystalsandaperiodicFermiarcscattering)为题,于3月18日在线发表于国际权威期刊《自然-通讯》(NatureCommunications)上。

相关推荐

封面图片

微观奇迹:可能改变量子研究与激光技术的光子拓扑绝缘体

微观奇迹:可能改变量子研究与激光技术的光子拓扑绝缘体研究中开发的光子拓扑绝缘体效果图。资料来源:伦斯勒理工学院伦斯勒理工学院(RensselaerPolytechnicInstitute)的研究人员制造出了一种比头发丝还细的装置,它将帮助物理学家研究物质和光的基本性质。他们的研究成果发表在《自然-纳米技术》(NatureNanotechnology)杂志上,还有助于开发更高效的激光器,这种激光器被广泛应用于医疗和制造等领域。该设备由一种名为光子拓扑绝缘体的特殊材料制成。光子拓扑绝缘体可以引导光子(构成光的波状粒子)进入材料内部专门设计的界面,同时还能防止这些粒子通过材料本身发生散射。由于这一特性,拓扑绝缘体可以使许多光子相干地像一个光子一样行动。这些设备还可用作拓扑"量子模拟器",即研究人员可以研究量子现象(在极小尺度上支配物质的物理定律)的微型实验室。"我们创造的光子拓扑绝缘体是独一无二的。它能在室温下工作。这是一个重大进步。以前,人们只能使用昂贵的大型设备在真空中对物质进行超冷却,才能研究这种机制。许多研究实验室都没有这种设备,因此我们的设备可以让更多人在实验室里从事这种基础物理研究。"RPI材料科学与工程系助理教授、《自然-纳米技术》研究报告的资深作者WeiBao说。Bao补充说:"这也是在开发运行所需能量更少的激光器方面迈出的充满希望的一步,因为我们的室温设备阈值(使其工作所需的能量)比以前开发的低温设备低七倍。"RPI的研究人员利用半导体行业用于制造微芯片的相同技术制造出了他们的新型设备,这种技术包括将不同种类的材料逐个原子、逐个分子地分层,以制造出具有特定性能的理想结构。为了制造这种装置,研究人员在金属卤化物过氧化物(一种由铯、铅和氯组成的晶体)上生长出超薄板,并在上面蚀刻出带有图案的聚合物。他们将这些晶体板和聚合物夹在各种氧化物材料的薄片之间,最终形成了一个厚约2微米、长宽均为100微米的物体(人类头发的平均宽度为100微米)。当研究人员用激光照射该装置时,在材料设计的界面上出现了一个发光的三角形图案。这种图案由装置的设计决定,是激光拓扑特性的结果。"能够在室温下研究量子现象是一个令人兴奋的前景。鲍教授的创新工作表明,材料工程学可以帮助我们回答一些科学上的重大问题,"RPI工程学院院长ShekharGarde说。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1433331.htm手机版:https://m.cnbeta.com.tw/view/1433331.htm

封面图片

中山大学团队发现编织晶界 研究成果在《自然》杂志发表

中山大学团队发现编织晶界研究成果在《自然》杂志发表“做一张更高效、更可靠、更耐用的分离膜,这是我们的出发点。”中山大学化学学院郑治坤教授团队成功制备出高韧性、高弹性、高机械强度的二维晶体薄膜,并报告了一种利用牺牲性小分子结构导向剂导向相邻晶畴形成编织晶界结构的制备方法,有望扩展晶体膜在分离、光电、柔性器件等领域的应用。相关成果近日刊发在《自然》杂志。论文截图。本文图片均由中山大学提供晶界是晶体内部的缺陷结构,通常,天然和合成晶态材料是由多个单晶晶畴连接到一起,其间的大量晶界制约着材料的机械稳定性。这一影响在由单层原子或少数原子层构成的二维晶体中格外严重,一个线性晶界就将导致二维晶体薄膜的断裂。此外,如同木材刚劲则容易折断、柔软则难以承重,二维晶体的机械强度与韧性往往相互制约。在该研究中,团队在制备二维晶体聚合物时加入牺牲性导向试剂,以线性聚合物为“梭”,利用其自发缠绕、穿插的特性,将二维聚合物编织起来,形成编织晶界。待晶界形成,线性聚合物又会随排异的结晶过程自动离开。进一步实验表明,这种全新晶界结构——编织晶界连接形成的晶态聚合物膜具有高韧性、高弹性和高机械强度的特点,其抗压性能接近铝合金和黄金。当材料受力断裂时,裂纹不扩展,且不影响裂纹附近膜的机械性能。编织晶界聚合物均孔膜合成示意图。郑治坤教授表示,这为二维晶体材料在柔性器件和分离膜方面的应用奠定了基础。柔性材料可用于生产柔性显示器、柔性电池、柔性传感器等;膜分离技术则已普遍用于化工、环保、生物工程等领域。与常规膜分离相比,全结晶的聚合物膜有望以更高效率分离出更高纯度的物质。郑治坤教授指导博士生杨永航做实验。...PC版:https://www.cnbeta.com.tw/articles/soft/1432469.htm手机版:https://m.cnbeta.com.tw/view/1432469.htm

封面图片

光子学技术新突破:科学家用微型芯片产生高质量微波信号

光子学技术新突破:科学家用微型芯片产生高质量微波信号盖塔实验室开发的光子集成芯片的高级示意图,该芯片用于全光学光分频(OFD)--一种将高频信号转换为低频信号的方法。图片来源:YunZhao/哥伦比亚工程学院这种芯片非常小巧,可以装在锋利的铅笔尖上,是迄今为止在集成光子平台上观察到的最低微波噪声。这项成果为高速通信、原子钟和自动驾驶汽车等应用提供了一条通往小尺寸超低噪声微波发生器的光明之路。用于全球导航、无线通信、雷达和精密计时的电子设备需要稳定的微波源作为时钟和信息载体。要提高这些设备的性能,关键在于减少微波中存在的噪声或相位随机波动。"在过去的十年中,一种被称为光分频的技术产生了迄今为止噪音最低的微波信号,"哥伦比亚工程学院应用物理和材料科学大卫-M-里基教授兼电气工程教授亚历山大-盖塔说。"通常情况下,这样的系统需要多个激光器和相对较大的体积来容纳所有元件。"光分频--一种将高频信号转换为低频信号的方法--是最近产生微波的创新技术,其中的噪声已被大大抑制。然而,由于光分频系统占用桌面空间较大,因此无法用于微型传感和通信应用,而这些应用需要更紧凑的微波源,因此光分频系统已被广泛采用。盖塔说:"我们已经实现了一种设备,只需使用单个激光器,就能在面积小至1平方毫米的芯片上完全实现光分频。我们首次展示了无需电子设备的光学分频过程,大大简化了设备设计。"量子和非线性光子学:创新的核心盖塔的研究小组专门研究量子和非线性光子学,即激光如何与物质相互作用。研究的重点领域包括非线性纳米光子学、频率梳生成、强超快脉冲相互作用以及光量子态的生成和处理。在目前的研究中,他的研究小组设计并制造了一种片上全光学器件,该器件能产生16GHz的微波信号,其频率噪声是迄今在集成芯片平台上实现的最低频率噪声。该设备使用两个由氮化硅制成的微谐振器,通过光子耦合在一起。单频激光器泵浦两个微谐振器。其中一个用于产生光参量振荡器,将输入波转换成两个输出波--一个频率较高,一个频率较低。两个新频率的频率间隔被调整为太赫兹频率。由于振荡器的量子相关性,这种频率差异的噪声可比输入激光波的噪声小数千倍。第二个微谐振器经调整后可产生具有微波间隔的光频梳。然后,振荡器发出的少量光被耦合到梳状频率发生器,从而使微波梳状频率与太赫兹振荡器同步,自动实现光分频。潜在影响和未来应用盖塔研究小组的工作代表了一种在小型、坚固和高度便携的封装内进行光学分频的简单而有效的方法。这些研究成果为芯片级设备打开了大门,这些设备能够产生稳定、纯净的微波信号,可与进行精密测量的实验室产生的信号相媲美。他说:"最终,这种全光分频将带来未来电信设备的新设计。它还能提高用于自动驾驶汽车的微波雷达的精度。"编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1425719.htm手机版:https://m.cnbeta.com.tw/view/1425719.htm

封面图片

《三体》“人造太阳”有望实现?袁丁团队研究成果登上《自然·天文学》杂志

《三体》“人造太阳”有望实现?袁丁团队研究成果登上《自然·天文学》杂志发表杂志《自然·天文学》(NatureAstronomy)内页截图5月25日,该成果以“TransverseOscillationsandEnergySourceinaStronglyMagnetizedSunspot”《强磁化太阳黑子中的横模振荡与能量源》为题发表在《自然·天文学》上,哈工大(深圳)副教授袁丁为第一兼通讯作者,硕士研究生付立博为第二作者,教授冯学尚和博士后BlazejKuzma为合作作者。记者了解到,这项研究集合了欧洲、美国等多国科学家、科研机构的共同努力。哈工大(深圳)空间科学与应用技术研究院冯学尚教授与袁丁副教授作为课题发起者,承担了“总设计师”的工作,助人类理解太阳再上台阶。“日冕加热问题”意义重大“中国探月工程”已成功从月球带回了月壤。月亮越来越“近”,那么太阳呢?哈工大(深圳)空间科学与应用技术研究院副教授袁丁告诉记者,目前人类对太阳的研究仍停留在“初级阶段”。“现阶段,我们研究太阳主要服务航空宇航、通讯导航等领域。随着数字经济的发展,人类在太空中的资产越来越多,如空间卫星、空间站、月球(火星)基地,与之相随的是庞大的数字经济产业链。而太阳的活动直接威胁着人类的太空资产。太阳风暴来袭,电力网络或通讯系统受损,我们将面临没有电力、通信、互联网和社交媒体的生活。”太阳黑子中本影纤维在强磁区域横向震荡,携带巨大的能量太阳是一个由氢组成的气体球,其能量均来自于太阳内部的核聚变反应——能量由内向外传输,从太阳内核到太阳表面(光球层),温度从1600多万摄氏度降低到5000多摄氏度。日冕处于光球层之外,距离内核的热源更远,其温度应该更低。但日冕的实际温度却高达数百万摄氏度,比光球层高出1000-10000倍,这就是困扰物理学界百年的难题——太阳日冕加热问题。太阳日冕加热问题是太阳研究领域的“显学”,在2012年被SCIENCE《科学》杂志选为当代天文学的八大未解之谜之一。哈工大(深圳)空间科学与应用技术研究院副教授袁丁袁丁本科在哈工大学习光信息科学与技术,在瑞典皇家理工大学取得核能工程硕士,此后又在英国华威大学获得物理学哲学博士。复合、跨学科的学习经历,为他后来研究太阳物理打下了扎实基础。2017年,完成学业后,袁丁来到哈工大(深圳)空间科学与应用技术研究工作。“这是一个诺奖级别的科研主题。”袁丁说,他长期关注日冕加热问题:日冕为什么那么热?弄清日冕加热的原理,将推进“人造太阳”相关科研,人类用上安全、清洁、高效、可持续的“人造太阳”能源或将不再是梦想。科幻小说《三体》描述的未来世界里,人类造出了可控核聚变装置——反应炉中燃起的“微型太阳”,消耗少量的燃料就能释放出巨大的热量用于发电,这种装置被称为“人造太阳”。古德太阳望远镜成“神助攻”关于日冕加热问题,科学界有过众多假设、推想以及研究。冯学尚与袁丁在前人的基础上又进一步。2018年,袁丁赴美国加州大熊湖天文台开展天文观测,在那里找到了破解谜题的“神助攻”——古德太阳望远镜。古德太阳望远镜口径为1.6米,是目前世界上正在运营的最大口径的太阳望远镜,其得天独厚的观测台址和强大的观测仪器设备,为攻克该项极具挑战的研究课题提供了可能。袁丁利用古德太阳望远镜的高时空分辨率观测资料,发现太阳黑子的强磁场中存在周期性横向运动,即横模磁流体波。美国大熊湖天文台口径1.6米古德太阳望远镜是世界上口径最大的现役太阳望远镜袁丁解释说,太阳黑子是太阳表面温度最低的结构,温度约为4000摄氏度,其上方对应的太阳活动区却是太阳日冕温度最高的区域,约为200万至2000万摄氏度,这样由太阳黑子和活动区组成的磁场和高温等离子体耦合结构对太阳等离子体加热的条件更加苛刻,这些特征引起了研究团队的注意。2018年袁丁在美国加州大熊湖天文台进行天文观测时,恰逢太阳黑子活跃周期,他发现太阳黑子里的本影纤维横向摆动,由此产生出巨大能量。“观测时机很重要。”袁丁说。机会总是偏爱有准备的头脑。观测、查阅数据、提出假想并联合国际团队共同研究,最终根据数学建模,计算出太阳黑子的强磁区域(约4000高斯)所需驱动力高出太阳其它区域的100至1000倍,此类运动所携带的能量流约为7500000瓦每平方米,只要千分之一或者万分之一的能量即可足太阳日冕加热所需能量流,符合太阳等离子体加热的要求。“太阳黑子强磁区域的横向运动相当于城市中高楼大厦都在横向摆动,此类运动携带了巨大的能量流,只有强烈的地震可以驱动此类运动。据此可以想象,太阳黑子强磁场的横向运动携带着很高的能量。据团队估算,该能量流相当于7500部空调全功率炙烤1平方米的面积。”袁丁说。研究成果引发热议谈及研究的意义,袁丁称该研究最大的突破是首次探测到比日冕加热所需能量流强上万倍的全新能量源,并利用超级计算机模拟重现了该能量源的等离子体加热效应,开创了日冕加热的革新性领域。该研究具备解决日冕加热问题这一百年物理学难题的潜力,有望成为下一代4-8米口径太阳望远镜等大型国际科研设备的重点科学目标。据了解,论文发表之后,引起了科学界和公众密切关注。Nature杂志社邀请意大利宇航局著名科学家MarcoStangalini针对此研究撰写评述,评价此研究对于日冕加热理论的突破性贡献和对于大型地面太阳望远镜建设的指导意义。《国家地理》等十几家国际著名媒体和科学杂志报道了此项研究。电视剧《三体》剧照该研究探测到比日冕加热所需能量流还强的全新能量源,这不禁诱发联想——《三体》中的“人造太阳”会否因此更加接近现实?袁丁表示,该成果的确有助于推动“人造太阳”的等离子体加热技术研发。等离子体加热是解释太阳风来源的重要步骤,而太阳风为星际旅行提供了重要的燃料。“当然,无论是‘人造太阳’还是‘星际旅行’,都不太可能在短期内变为现实,但该项研究成果为后续的研究奠定了非常重要的基础。”袁丁表示,该成果将相关科研的“进度条”往前推动了一步。袁丁同时透露,该团队将会继续聚焦日冕加热领域的科研。“下一步,团队研究的焦点是太阳黑子的全新能量源是否普遍存在。再往前的目标则是将该理论应用到恒星黑子,利用先进的数学建模和天文设备探索恒星黑子的等离子体加热机制。”该项目由冯学尚与袁丁领衔的国际团队共同完成,研究得到了全球专家学者的支持:硕士研究生付立博和BlazejKuzma博士后分别参与了天文数据分析和双流体磁流体数值模拟工作;哈工大(深圳)空间科学与应用技术研究院负责天文实验设计和天文数据分析工作;新泽西理工大学(大熊湖天文台)承担古德太阳望远镜的天文观测和数据校准工作;西班牙加纳利天文物理研究所承担斯托克斯光学反演和建模工作;波兰居里夫人大学物理学院负责双流体磁流体数值模拟工作;比利时鲁汶大学数学系负责数学建模工作;印度理工学院团队参与了天文实验设计和论文写作相关工作;昆明理工大学信息工程与自动化学院、深圳信息职业技术学院、国家天文台参与了天文数据分析等相关工作。【哈工大(深圳)空间科学与应用技术研究院】...PC版:https://www.cnbeta.com.tw/articles/soft/1368941.htm手机版:https://m.cnbeta.com.tw/view/1368941.htm

封面图片

重塑磁性:麻省理工学院拓扑材料学研究迎来开创性进展

重塑磁性:麻省理工学院拓扑材料学研究迎来开创性进展最先进的X射线和中子光谱分析发现,拓扑材料晶体中拓扑奇异性的存在使磁性稳定在经典转变温度之上。图片来源:EllaMaruStudio由麻省理工学院核科学与工程系副教授李明达领导,麻省理工学院量子测量组研究生助理研究员、哈佛大学应用物理学博士生内森-德鲁克(NathanDrucker)与麻省理工学院量子测量组研究生ThanhNguyen和PhumSiriviboon合著的一项新研究正在挑战这一传统观点。这项公开发表在《自然-通讯》(NatureCommunications)杂志上的研究首次证明,拓扑结构可以稳定磁有序,甚至远高于磁转变温度--磁性通常会在这一点上瓦解。德鲁克是这篇论文的第一作者,他说:"我喜欢用这样一个比喻来描述为什么这能起作用,那就是想象一条河里满是圆木,圆木代表材料中的磁矩。要使磁性起作用,你需要所有这些圆木都指向同一个方向,或者它们之间有一定的规律。但在高温下,磁矩都朝向不同的方向,就像河流中的原木一样,磁性就会瓦解。"他继续说:"但这项研究的重要意义在于,实际上是水在发生变化。我们所展示的是如果改变水本身的特性,而不是原木的特性,就可以改变原木之间的相互作用,从而产生磁性。"拓扑结构在增强磁性中的作用Li说,从本质上讲,这篇论文揭示了在CeAlGe(一种由铈、铝和锗组成的奇异半金属)中发现的被称为Weyl节点的拓扑结构如何显著提高磁性器件的工作温度,从而为广泛的应用打开大门。虽然拓扑材料已被用于制造传感器、陀螺仪等,但它们还被广泛应用于微电子、热电和催化设备等领域。Nguyen说,这项研究展示了在更高温度下保持磁性的方法,为更多的可能性打开了大门。在这种材料和其他拓扑材料中,人们已经展示了许多机会。这表明了一种可以显著提高这些材料工作温度的通用方法。加州理工学院物理、数学和天文学部物理学助理教授LindaYe补充说,这一"相当令人惊讶和反直觉"的结果将对拓扑材料的未来工作产生重大影响。研究工作表明,电子拓扑节点不仅在稳定静态磁序方面发挥作用,而且更广泛地说,它们可以在磁波动的产生方面发挥作用。由此得出的一个自然结论是,拓扑韦尔态对材料的影响可能远远超出人们之前的认识。普林斯顿大学物理学教授安德烈-伯内维格对此表示赞同,称这一发现"令人费解,也非常了不起。众所周知,Weyls节点受到拓扑学保护,但这种保护对相的热力学性质的影响并不十分清楚,麻省理工学院研究小组的论文表明,在有序温度之上的短程有序受该体系中出现的韦尔费米子之间的嵌套波矢量支配......这可能表明,韦尔节点的保护在某种程度上影响了磁波动!"揭开磁性之谜虽然这些令人惊讶的结果挑战了人们长期以来对磁性和拓扑学的理解,这是精心实验的结果,也是研究小组愿意探索那些可能被忽视的领域的结果。"我们的假设是,在磁转变温度之上没有新的发现,"Li解释说。"我们使用了五种不同的实验方法,以一致的方式创造了这个全面的故事,并将这个谜团拼凑在一起。"为了证明磁性在更高温度下的存在,研究人员首先在熔炉中将铈、铝和锗结合在一起,形成毫米大小的材料晶体。然后对这些样品进行了一系列测试,包括热导率和电导率测试,每项测试都揭示了这种材料不寻常磁性行为的线索。德鲁克说:"不过,我们还采用了一些更奇特的方法来测试这种材料。我们用一束与材料中的铈的能级相同的X射线照射这种材料,然后测量光束的散射情况。这些测试必须在能源部国家实验室的一个大型设备中进行。最终,我们不得不在三个不同的国家实验室做类似的实验,以证明那里存在这种隐藏的秩序,我们就是这样找到了最有力的证据。"Nguyen说,"部分挑战在于,在拓扑材料上进行此类实验通常非常困难,而且通常只能提供间接证据。在这种情况下所做的就是使用不同的探针进行多项实验,把它们放在一起,就能给我们一个非常全面的故事。在这种情况下,有五六条不同的线索,还有一大串仪器和测量结果都在这项研究中发挥了作用"。影响和未来方向展望未来,研究小组计划探索拓扑结构与磁性之间的关系能否在其他材料中得到证明。他们相信这一原理具有普遍性。因此,这可能存在于许多其他材料中,它拓展了我们对拓扑学作用的理解。我们知道它可以在增加导电性方面发挥作用,现在我们已经证明它也可以在磁性方面发挥作用。未来的其他工作还将涉及拓扑材料的可能应用,包括它们在热电设备中的应用,这种设备可以将热量转化为电能。虽然这类设备已经用于为手表等小型设备供电,但其效率还不足以为手机或其他大型设备供电。"我们已经研究了许多优秀的热电材料,它们都是拓扑材料,"Li说。"如果它们能用磁性显示出这种性能......它们将释放出非常好的热电特性。例如,这将有助于它们在更高的温度下运行。现在,许多太阳能电池只能在很低的温度下运行,以收集废热。这样做的一个非常自然的结果就是它们能够在更高的温度下工作"。这项研究最终表明,虽然拓扑半金属材料已经研究了很多年,但人们对它们的特性了解相对较少。德鲁克说:"我认为,我们的工作凸显了这样一个事实:当你观察这些不同的尺度,并使用不同的实验来研究其中一些材料时,事实上,一些非常重要的热电、电学和磁学特性就会开始显现出来。因此,我认为这不仅为我们如何将这些东西用于不同的应用提供了提示,也为我们如何更好地理解这些热波动效应的其他基础研究提供了跟进。"...PC版:https://www.cnbeta.com.tw/articles/soft/1390435.htm手机版:https://m.cnbeta.com.tw/view/1390435.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人