哈工大科研团队填补固体氧化物电池多场耦合精确模拟理论空白

哈工大科研团队填补固体氧化物电池多场耦合精确模拟理论空白从哈尔滨工业大学(深圳)获悉,该校理学院氢能与燃料电池研究团队,构建出力-热-电-化耦合的连续介质力学理论框架,定量研究出真实微观电极尺度固体氧化物电池初始性能,填补了固体氧化物电池多场耦合精确模拟理论空白。相关研究成果发表于《固体力学和物理学杂志》。据悉,固体氧化物电池作为一种高效的能源转换设备,在燃料电池发电、电解水制氢等领域具有巨大潜力。(科技日报)

相关推荐

封面图片

32.5%!过氧化物/硅串联太阳能电池技术进步打破了转化效率纪录

32.5%!过氧化物/硅串联太阳能电池技术进步打破了转化效率纪录但最好的结果似乎是当这两种材料搁置其竞争关系并合作时。过氧化物/硅串联太阳能电池比任何一种材料单独使用都更有效,因为它们能够收集太阳光谱的不同部分--过氧化物能更好地吸收蓝光,而硅则更注重红色和红外波长。新的HZB装置是由一个由几层薄的过氧化物组成的顶部电池和一个用硅做的底部电池组成的。有了一系列的层,不同颜色的光就可以过滤到较低的层次,并将电损耗降到最低。该团队还在活性区域和电极之间设计了一个新界面,这有助于提高电池的整体效率。新型过氧化物/硅串联太阳能电池的分解图最终的结果是一个拥有32.5%转化效率的过氧化物/硅串联太阳能电池。根据美国国家可再生能源实验室(NREL)保存并定期更新的图表,这个已经被独立验证的新记录是目前所有新兴光伏技术中最高的。与几个月前的记录保持者31.25%相比,这是一个相当大的进步,而一年前它甚至不到30%。该团队声称这一最新进展将该技术推向了一个重要的新领域。HZB科学主任BerndRech教授说:"在32.5%转化率下,HZB串联的太阳能电池效率现在已经达到了以前只有昂贵的III/V半导体才能达到的范围。NREL的图表清楚地显示了EPFL和HZB的最后两个增长是多么的壮观"。...PC版:https://www.cnbeta.com.tw/articles/soft/1335723.htm手机版:https://m.cnbeta.com.tw/view/1335723.htm

封面图片

新研发的全过氧化物串联太阳能电池拥有创纪录的高效率和电压表现

新研发的全过氧化物串联太阳能电池拥有创纪录的高效率和电压表现从效率上看,过氧化物燃料电池的运用比例在十年多一点的时间里急剧上升,从2009年的4%以下上升到2021年的25%以上,以至于现在可以与硅基太阳能电池匹敌。在所谓的串联电池中,它的效果甚至更好,在这种电池中,多层材料被堆叠在一起,以收集来自太阳的不同波长的光。例如,Perovskit-硅串联太阳能电池最近超过了30%的效率里程碑。在这项新的研究中,一个来自多伦多大学的工程师团队创造并测试了一个全过氧化物串联太阳能电池。一个太阳能电池怎么可能是全过氧化物而仍然是串联的呢?这是因为该材料的厚度和化学成分可以被调整,使其能够利用太阳光谱的不同部分,因此两种不同的材料可以结合在一个设备中。"在我们的电池结构中,顶部的过氧化物层有一个更宽的带隙,它在光谱的紫外线部分以及一些可见光中吸收良好,"该研究的共同牵头人李崇文说。"底层有一个狭窄的带隙,它更多地被调整到光谱的红外部分。在这两者之间,我们可以实现覆盖比用硅材料吸收更多的光谱。"使用这种设计,该团队报告说,一个尺寸为1平方厘米(0.15英寸)的太阳能电池的最大效率为27.4%,这将是这种类型的电池的新纪录,并且对于任何类型的太阳能电池来说都令人印象深刻。然而,该团队并没有声称自己是冠军,因为美国国家能源局之前的独立认证记录了26.3%的效率,而全过氧化物串联太阳能电池比目前的官方纪录保持者仅差0.1%。该电池确实在其电压表现方面取得了新的纪录。该团队测量的开路电压为2.19伏,是所有全过氧化物串联太阳能电池中最高的。这两个令人印象深刻的数据都是由于在过氧化物吸光层和携带电子的层之间的界面上进行了调整。研究小组发现,电场在整个过氧化物的表面并不一致,这意味着一些电子会流失到电路中。因此,研究小组添加了一层被称为1,3-丙二铵(PDA)的薄涂层,它使表面的电荷分布更均匀。该团队表示,未来的工作将集中在通过使电池更稳定、增加电流和扩大电池的尺寸来提高太阳能电池的效率。该研究发表在《自然》杂志上。了解更多:https://news.engineering.utoronto.ca/international-research-collaboration-produces-all-perovskite-tandem-solar-cell-with-high-efficiency-record-voltage/...PC版:https://www.cnbeta.com.tw/articles/soft/1332957.htm手机版:https://m.cnbeta.com.tw/view/1332957.htm

封面图片

革命性催化剂涂层技术在短短4分钟内大幅提升燃料电池性能

革命性催化剂涂层技术在短短4分钟内大幅提升燃料电池性能一个合作研究小组开发出一种新型催化剂涂层技术,只需四分钟就能将固体氧化物燃料电池的性能提高三倍,为能源转换技术带来了潜在的进步。资料来源:韩国能源研究所(KIER)该技术采用纳米级氧化镨催化剂,针对空气电极的氧还原反应,显著提高了SOFC的功率输出。这种新方法既经济又与现有制造工艺兼容,有望得到更广泛的应用,包括高温电解制氢。韩国能源研究所(KIER)氢聚合材料实验室的YoonseokChoi博士与韩国科学技术院(KAIST)材料科学与工程系的WooChulJung教授和釜山国立大学材料科学与工程系的Beom-KyungPark教授一起,成功开发出一种催化剂涂层技术,可在短短4分钟内显著提高固体氧化物燃料电池(SOFC)的性能。作为推动氢经济发展的高效清洁能源设备,燃料电池正受到越来越多的关注。其中,固体氧化物燃料电池(SOFC)的发电效率最高,可使用氢气、沼气和天然气等各种燃料。此外,它们还可以利用发电过程中产生的热量,实现热电联产,因此成为目前研究和开发的热点。SOFC的LSM-YSZ电极电化学涂层工艺示意图。资料来源:韩国能源研究院(KIER)固体氧化物燃料电池(SOFC)的性能在很大程度上取决于发生在空气电极(阴极)上的氧还原反应(ORR)动力学。空气电极的反应速率慢于燃料电极(阳极)的反应速率,从而限制了整体反应速率。为了克服这种缓慢的动力学特性,研究人员正在开发具有高ORR活性的新型空气电极材料。然而,这些新材料一般仍缺乏化学稳定性,需要不断进行研究。联合研究小组照片(最右边为高级研究员Yoon-SeokChoi)。资料来源:韩国能源研究院(KIER)研究团队将重点放在提高LSM-YSZ复合电极的性能上,这种材料因其出色的稳定性而被广泛应用于工业领域。因此,他们开发了一种在复合电极表面涂覆纳米级氧化镨(PrOx)催化剂的涂层工艺,这种催化剂能积极促进氧还原反应。通过应用这种涂层工艺,他们显著提高了固体氧化物燃料电池的性能。研究小组引入了一种电化学沉积方法,该方法可在室温和大气压力下运行,无需复杂的设备或工艺。将复合电极浸入含有镨(Pr)离子的溶液中并施加电流,电极表面产生的氢氧根离子(OH-)会与镨离子发生反应,形成沉淀,均匀地覆盖在电极上。该涂层经过干燥过程,转化为氧化物,在高温环境中保持稳定并有效促进电极的氧还原反应。整个涂层过程只需4分钟。此外,研究小组还阐明了涂层纳米催化剂促进表面氧交换和离子传导的机制。他们提供的基本证据表明,催化剂涂层方法可以解决复合电极反应速率低的问题。通过对所开发的催化剂涂层复合电极和传统复合电极进行超过400小时的操作,研究小组观察到极化电阻降低了十倍。此外,在650摄氏度的条件下,使用这种涂层电极的SOFC的峰值功率密度(142mW/cm²→418mW/cm²)是未涂层情况下的三倍。这代表了使用LSM-YSZ复合电极的SOFC的最高性能。共同通讯作者YoonseokChoi博士说:"我们开发的电化学沉积技术是一种后处理方法,不会对现有的SOFC制造工艺产生重大影响。这使得引入氧化物纳米催化剂具有经济可行性,提高了其工业应用性。我们已经掌握了一项核心技术,它不仅可以应用于SOFC,还可以应用于各种能量转换设备,例如用于制氢的高温电解(SOEC)。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1436244.htm手机版:https://m.cnbeta.com.tw/view/1436244.htm

封面图片

加州大学洛杉矶分校的技术突破可能带来更耐用、更便宜的太阳能电池

加州大学洛杉矶分校的技术突破可能带来更耐用、更便宜的太阳能电池从理论上讲,基于过氧化物的太阳能电池可以用比硅成本更低、更容易获得的原材料来制造;它们也可以用更少的能源和更简单的制造工艺来生产。但是到目前为止,一个绊脚石是过氧化物在暴露于光和热的情况下会分解--这对旨在从太阳中产生能量的设备来说尤其成问题。加州大学洛杉矶分校的博士后研究员和该研究的第一作者YepinZhao拿着一枚基于过氧化物的太阳能电池。资料来源:YangLab/UCLA现在,一个由加州大学洛杉矶分校领导的国际研究合作已经开发出一种方法,在太阳能电池中使用过氧化物,同时保护它不受导致其恶化的条件影响。在最近发表在《自然材料》上的一项研究中,科学家们将少量的离子-也就是带电的原子直接添加到过氧化物中。他们发现,当暴露在光和热下时,增强后的过氧化物晶体不仅更加耐用,而且还能更有效地将光转化为电。通讯作者、加州大学洛杉矶分校工程系CarolandLawrenceE.Tannas,Jr.教授说:"可再生能源至关重要。过氧化物将是一个游戏规则的改变者,因为它可以以硅的方式进行大规模生产,而且我们已经确定了一种添加剂,将使这种材料变得更好。"卤化物过氧化物能够将光转化为电,是由于其分子形成重复的立方体网格的方式。这种结构是由带相反电荷的离子之间的键固定在一起的。但是,光和热往往会导致带负电的离子从过氧化物中弹出,这破坏了晶体结构,削弱了该材料的能量转换特性。图中显示了未经改变的过氧化物分子(左)的结构,其中碘离子(紫色)正在迁移;以及添加了钕离子(红色)的过氧化物分子,以帮助保留碘离子。资料来源:YangLab/UCLA钕通常被用于麦克风、扬声器、激光器和装饰玻璃。它的离子大小正好可以嵌在立方过氧化物晶体中,而且它们带有三个正电荷,科学家们假设这将有助于将带负电的离子固定在原位。研究人员在每10000个过氧化物分子中加入了大约8个钕离子,然后测试了该材料在太阳能电池中的性能。在最大功率下工作并在连续光照下超过1000小时,使用增强型过氧化物的太阳能电池保持了约93%的光转换效率。相比之下,使用标准过氧化物的太阳能电池在相同的条件下经过300小时后失去了一半的电力转换效率。研究小组还在没有任何设备取电的情况下对太阳能电池进行了连续照射,这加速了过氧化物的降解。一个使用含钕的过氧化物的设备在超过2000小时后保留了84%的电力转换效率,而一个使用标准过氧化物的设备在该时间后直接无法使用。为了测试材料承受高温的能力,研究人员将带有这两种材料的太阳能电池加热到大约180华氏度。使用增强型过氧化物的太阳能电池在超过2000小时后保持了约86%的效率,而标准的过氧化物装置在这段时间内完全失去了将光转化为电能的能力。在以前的许多旨在使过氧化物燃料电池更耐用的研究中,研究人员已经尝试在材料上添加保护层,但这在很大程度上是失败的。增强材料本身的想法来自于主要作者YepinZhao,他是Yang实验室的一名博士后研究人员。Zhao说,他的灵感来自于一种通常用于生产硅半导体的技术--添加少量的其他化合物来改变材料的特性。Zhao说:"离子往往像高速公路上的汽车一样在过氧化物中移动,这导致了材料的分解。有了钕,我们找到了一个路障来减缓交通并保护材料。"Yang说,这一进展可能有助于过氧化物太阳能电池在未来两到三年内进入市场。...PC版:https://www.cnbeta.com.tw/articles/soft/1336383.htm手机版:https://m.cnbeta.com.tw/view/1336383.htm

封面图片

日本东北大学开发岩盐氧化物阴极材料 适用于可充电镁电池

日本东北大学开发岩盐氧化物阴极材料适用于可充电镁电池这项研究表明,镁在岩盐结构中的扩散有了相当大的改善。这是一个关键性进展,因为以往这种结构中的原子密度会阻碍镁迁移。通过加入含有七种不同金属元素的重要混合物,该团队创建了富含稳定阳离子空位的晶体结构,使镁更易于嵌入和提取。这是首次将岩盐氧化物用作RMB阴极材料。研究人员采用了高熵策略,以促进阳离子缺陷激活岩盐氧化物阴极。这一进展还解决了RMB的一个关键问题,即镁在固体材料中传输困难。到目前为止,镁的迁移率在传统阴极材料中(如尖晶石结构材料)需要通过高温来提高。现在,这项研究开发的材料仅在90°C下就能有效工作,从而表明所需的工作温度明显降低。东北大学材料研究所(IMR)教授TomoyaKawaguchi指出,这项研究具有更广泛的影响。“锂资源稀缺且分布不均,而供应充足的镁为锂离子电池提供了更可持续、更具成本效益的替代品。借助新开发的阴极材料,镁电池将在各种应用中发挥关键作用,包括电网存储、电动汽车和便携式电子设备,为全球向可再生能源转型和减少碳排放做出贡献。”IMR另一位教授TetsuIchitsubo表示:“这项研究利用镁的内在优势,并突破了以前的材料局限性。这为开发下一代电池铺平了道路,有望产生重大的技术、环境和社会影响。”总之,在寻求高效、环保的储能解决方案方面,这一突破是向前迈出的重要一步。...PC版:https://www.cnbeta.com.tw/articles/soft/1426516.htm手机版:https://m.cnbeta.com.tw/view/1426516.htm

封面图片

新型锂金属氯化物固态电解质设计可为电池行业带来变革

新型锂金属氯化物固态电解质设计可为电池行业带来变革固态电解质的必要性目前的商用电池亟需解决的一个问题是对液态电解质的依赖,而液态电解质存在易燃和爆炸的风险。因此,开发不可燃的固体电解质对于推动固态电池技术的发展至关重要。在全球向可持续交通转变的过程中,全世界都在加紧管制内燃机汽车并扩大电动汽车的使用,因此,对二次电池核心部件,尤其是固态电池的研究取得了显著的进展。金属离子(本例中为钇)在各层中的排列会影响离子导电性。为确保锂离子畅通无阻地移动,每层中占据可用位置的金属离子数量应少于0.444。此外,要在每一层中为锂离子创造足够宽的通道,金属离子的占有率应大于0.167。因此,每层内金属离子的占有率应介于0.167和0.444之间,这样才能形成具有高离子电导率的导电层。资料来源:基础科学研究所要使固态电池在日常使用中切实可行,关键是要开发出具有高离子导电性、强大的化学和电化学稳定性以及机械灵活性的材料。虽然之前的研究成功地开发出了具有高离子电导率的硫化物和氧化物基固体电解质,但这些材料都不能完全满足所有这些基本要求。氯化物基固体电解质的研究进展过去,科学家们也曾对氯化物基固体电解质进行过探索。氯化物基固体电解质以其卓越的离子导电性、机械柔韧性和高电压稳定性而著称。这些特性使一些人推测氯化物电池最有可能成为固态电池。然而,这些希望很快就破灭了,因为氯化物电池严重依赖昂贵的稀土金属(包括钇、钪和镧系元素)作为辅助成分,因此被认为是不切实际的。为了解决这些问题,IBS研究小组研究了金属离子在氯化物电解质中的分布。他们认为,三元氯化物电解质之所以能达到较低的离子电导率,是基于结构中金属离子排列的变化。他们首先在氯化锂钇(一种常见的氯化锂金属化合物)上测试了这一理论。当金属离子位于锂离子通路附近时,静电力会阻碍锂离子的移动。相反,如果金属离子的占有率过低,锂离子的移动路径就会变得过于狭窄,从而阻碍锂离子的移动。基于这些见解,研究小组引入了设计电解质的策略,以缓解这些相互冲突的因素,最终成功开发出一种具有高离子电导率的固体电解质。研究小组还进一步成功地展示了这一策略,创造出一种基于锆的锂金属氯化物固态电池,其成本远远低于采用稀土金属的变体。这是首次证明金属离子排列对材料离子导电性的重要影响。金属离子分布的影响这项研究揭示了金属离子分布在氯基固体电解质离子电导率中经常被忽视的作用。预计IBS中心的研究将为各种氯基固体电解质的开发铺平道路,并进一步推动固态电池的商业化,有望提高能源存储的经济性和安全性。通讯作者KangKisuk说:"这种新发现的氯化物基固体电解质有望突破传统硫化物和氧化物基固体电解质的限制,使我们离固态电池的广泛应用更近了一步。"...PC版:https://www.cnbeta.com.tw/articles/soft/1394587.htm手机版:https://m.cnbeta.com.tw/view/1394587.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人