我国在量子研究领域取得重要突破

我国在量子研究领域取得重要突破今天,记者从清华大学获悉,清华大学段路明研究组近日在量子模拟计算领域取得重要突破,首次实现512离子二维阵列的稳定囚禁冷却以及300离子量子比特的量子模拟计算。该工作实现了国际上最大规模具有单比特分辨率的多离子量子模拟计算,将原来的离子量子比特数国际记录(61离子)往前推进了一大步,并首次实现基于二维离子阵列的大规模量子模拟。该成果研究论文近日发表于国际权威学术期刊Nature(《自然》),被《自然》审稿人称为量子模拟领域的“巨大进步”,“值得关注的里程碑”。(中青报)

相关推荐

封面图片

5月30日,记者从清华大学获悉,清华段路明研究组近日在量子模拟计算领域取得重要突破,首次实现512离子二维阵列的稳定囚禁冷却

5月30日,记者从清华大学获悉,清华大学段路明研究组近日在量子模拟计算领域取得重要突破,首次实现512离子二维阵列的稳定囚禁冷却以及300离子量子比特的量子模拟计算。该工作实现了国际上最大规模具有单比特分辨率的多离子量子模拟计算,将原来的离子量子比特数国际记录(61离子)往前推进了一大步,并首次实现基于二维离子阵列的大规模量子模拟。该成果研究论文近日发表于国际权威学术期刊Nature(《自然》),被《自然》审稿人称为量子模拟领域的“巨大进步”,“值得关注的里程碑”。(中青报)

封面图片

中科院院士段路明团队在量子研究领域取得重要突破 《自然》官网发表

中科院院士段路明团队在量子研究领域取得重要突破《自然》官网发表段路明院士(右一)指导学生实验。清华大学供图研究团队介绍,离子阱系统被认为是最有希望实现大规模量子模拟和量子计算的物理系统之一,多个实验验证了离子量子比特的高精密相干操控,该系统的规模化被认为是主要挑战。清华段路明研究组利用低温一体化离子阱技术和二维离子阵列方案,大规模扩展离子量子比特数,提高离子阵列稳定性,首次实现512离子二维阵列的稳定囚禁和边带冷却,并首次对300离子实现可单比特分辨的量子态测量。研究人员进而利用300个离子量子比特实现可调耦合的长程横场伊辛模型的量子模拟计算。长程横场伊辛模型,是一类重要的量子多体模型,有助于理解量子信息、凝聚态物理等领域的基本问题,也可用于求解优化问题等现实应用。该工作实现了国际上最大规模具有单比特分辨率的多离子量子模拟计算,将该研究组保持的离子量子比特数国际记录(61离子),往前推进了一大步,首次实现基于二维离子阵列的大规模量子模拟。研究人员还对该模型的动力学演化进行量子模拟计算,300个离子量子比特同时工作时,所能执行的计算复杂度达到2的300次方,超越经典计算机的直接模拟能力。该实验系统为进一步研究多体非平衡态量子动力学这一重要难题提供了强大的工具。...PC版:https://www.cnbeta.com.tw/articles/soft/1432967.htm手机版:https://m.cnbeta.com.tw/view/1432967.htm

封面图片

我国科学家实现最大规模离子阱量子模拟计算

我国科学家实现最大规模离子阱量子模拟计算离子阱是通过电磁场将离子限定在有限空间内的设备,被认为是有望实现大规模量子计算的物理系统之一。如何把大量离子稳定“囚禁”于离子阱,再通过激光控制,制造量子计算的基本数据单元“量子比特”,是项国际性难题。中国科学院院士、清华大学交叉信息研究院段路明教授团队30日在国际学术期刊《自然》上发表一项量子模拟计算方面的突破性成果。该团队首次利用二维离子阵列实现了目前已知国际最大规模、具有“单比特分辨率”的多离子量子模拟计算,为实现大规模量子计算提供了新路径。(新华社)

封面图片

研究人通过可扩展量子点棋盘实现量子计算突破

研究人通过可扩展量子点棋盘实现量子计算突破承载16个量子点交叉阵列的量子芯片照片,与棋盘图案无缝集成。每个量子点就像棋盘上的棋子,都可以通过字母和数字坐标系进行唯一识别和控制。图片来源:MariekedeLorijnforQuTech。图片来源:MariekedeLorijnforQuTech量子点可用于容纳量子计算机的基础构件--量子比特。目前,每个量子位都需要自己的寻址线和专用控制电子设备。这非常不切实际,与当今的计算机技术形成了鲜明对比,在当今的计算机技术中,数十亿个晶体管只需几千条寻址线即可运行。代尔夫特理工大学(TUDelft)和应用科学研究组织(TNO)合作成立的QuTech公司的研究人员开发出了一种类似的量子点寻址方法。就像用字母(A到H)和数字(1到8)组合来寻址国际象棋棋子的位置一样,量子点也可以用水平线和垂直线组合来寻址。棋盘上的任何一点都可以通过字母和数字的特定组合来定义和寻址。他们的方法将最先进的技术提升到了一个新水平,实现了16量子点系统在4×4阵列中的运行。第一作者弗朗切斯科-博尔索伊解释说:"这种解决量子点问题的新方法有利于扩展到多个量子位。如果使用一根线控制和读出单个量子位,那么数百万个量子位就需要数百万根控制线。这种方法不能很好地扩展。但是,如果使用我们的棋盘式系统来控制量子位,那么数百万量子位只需"使用"数千条控制线即可寻址,其比例与计算机芯片非常相似。线路的减少为量子比特数量的扩展提供了前景,是量子计算机的一个突破,量子计算机最终将需要数百万量子比特。"提高数量和质量量子计算机不仅需要数百万量子比特,量子比特的质量也极为重要。最后一位作者兼首席研究员门诺-维尔德霍斯特(MennoVeldhorst)说:"就在最近,我们已经证明,这些类型的量子比特可以以99.992%的保真度运行。这是所有量子点系统中最高的,意味着每万次操作的平均误差不到1次。通过开发复杂的控制方法和使用锗作为宿主材料,这些进步成为可能,因为锗具有许多有利于量子运行的特性"。量子模拟的早期应用由于量子计算正处于早期发展阶段,因此我们有必要考虑如何以最快的速度实现实用的量子优势。换句话说:量子计算机何时才能比传统超级计算机"更好"?一个明显的优势是可以模拟量子物理,因为量子点的相互作用是基于量子力学原理的。事实证明,量子点系统可以非常有效地进行量子模拟。Veldhorst说:"在最近发表的另一篇文章中,我们展示了锗量子点阵列可用于量子模拟。这项工作是首次使用标准半导体制造材料进行的相干量子模拟。我们能够对共振价键进行初级模拟。虽然这项实验仅基于一个小型装置,但在大型系统上执行此类模拟可能会解决物理学中的长期问题。"未来工作Veldhorst总结道:"令人兴奋的是,我们在向更大系统扩展、提高性能以及获得量子计算和模拟机会方面迈出了几步。一个悬而未决的问题是,我们能将这些棋盘式电路做多大,如果存在限制,我们是否能利用量子链路将许多棋盘式电路互连起来,从而构建更大的电路。"...PC版:https://www.cnbeta.com.tw/articles/soft/1381635.htm手机版:https://m.cnbeta.com.tw/view/1381635.htm

封面图片

微软和 Quantinuum 声称在量子计算领域取得突破

据路透社报道,微软和Quantinuum周三表示,通过提高量子计算机的可靠性,他们在使量子计算机成为商业现实方面迈出了关键一步。量子计算机可以执行传统计算机需要几百万年才能完成的科学计算任务。量子计算的基础单位“量子比特”虽然计算速度极快,但非常敏感,如果量子计算机受到轻微干扰就会产生数据错误。为了克服这个问题,量子计算研究人员通常会制造出远超需求的物理量子比特,并通过纠错技术,产生较少数量但高度可靠和实用的量子比特。微软和Quantinuum表示他们在该领域取得了突破。微软将其编写的纠错算法应用于Quantinuum的物理量子比特上,从30个物理量子比特中获得了大约了4个高度可靠的量子比特。微软负责战略任务和技术的执行副总裁JasonZander表示,该公司相信这是迄今为止量子芯片中可靠量子比特的最佳比例。微软表示,计划在未来几个月内向其云计算客户发布该技术。via匿名标签:#微软#AI#Quantinuum频道:@GodlyNews1投稿:@GodlyNewsBot

封面图片

全数字化量子模拟出手 在量子芯片上“搭”出时间晶体

全数字化量子模拟出手在量子芯片上“搭”出时间晶体此次,浙大研究团队首次尝试了“全数字化量子模拟”的实验方案。该方案在26量子比特的超导量子芯片上,通过操作高达240层深度的量子门,实现合作者的构思。相比于“类比量子模拟”,“全数字化量子模拟”的通用性更强,具有更高的编程灵活度和量子门精度,能够执行更多种类的量子算法。食盐、矿石等人们日常熟悉的一般晶体,构成它们的原子在空间排列上呈现周期性变化的规律。而时间晶体,也就是一种四维以上的空间晶体,其特征在时间上也呈现出周期性变化的规律。近日,《自然》杂志发表了由浙江大学(以下简称浙大)物理学院王震、王浩华研究组与清华大学交叉信息研究院邓东灵研究组等合作的研究成果。科研人员在超导量子芯片上首次采用全数字化量子模拟方式,实现了“拓扑时间晶体”这种全新的物质状态。在研究中,研究人员成功观测到了“拓扑时间晶体”的边缘因拓扑保护而呈现出离散时间晶体的行为,即浮球(Floquet)对称保护拓扑相。在超导量子芯片上使用数字化量子模拟的方法,有望被用于探索更多的物理学前沿问题。在寻找时间晶体过程中另辟蹊径联合团队绘制的数字量子模拟拓扑时间晶体概念图显示,超导量子芯片内部就像一个多姿多彩的量子世界。科学家们在这个量子世界中构建“拓扑时间晶体”。“拓扑时间晶体”规则排布的晶体代表保护拓扑的对称性,旋转的指针代表时间维度,中间不断流出的数字则代表数字模拟……在理论方面,关于时间晶体,有科学家曾提出离散时间晶体的概念,并提出了在一类非平衡态系统——量子多体局域化系统中创造时间晶体的理论模型;而在实验方面,近年来,有研究团队分别在离子阱平台、金刚石色心平台和核磁共振量子平台等多个平台上实现了“离散时间晶体”。时间晶体的特殊之处在于,它的周期性重复是自然且稳定的“基态”,即物质处于能量最低时的状态。浙大物理学院研究员王震解释说:“时间晶体并不需要像钟表运行那样消耗能量,其‘天性’类似于频闪或者呼吸,是周期性变化的。”两年前,清华大学教授邓东灵开始构思一种新的时间晶体,即尝试将拓扑的概念引入时间晶体。通过与浙大超导量子计算团队合作,他尝试在超导量子芯片上创造这类全新的时间晶体。“常规的时间晶体已经在一些实验平台中实现,而我们想尝试别人没有做过的。”王震说。联合团队基于浙大杭州国际科创中心量子计算创新工坊发布的“天目1号”超导量子芯片开展实验。该芯片依托于浙江大学微纳加工中心制作,其平均比特相干时间突破100微秒,达到了国际先进水平。该芯片采用较易扩展的近邻连通架构,具备更高的编程灵活度,以便执行更多种类的量子算法,具有更加广阔的研究前景。打磨出“全数字化模拟”利器近年来,在解决经典计算机无法胜任的复杂问题方面,量子计算显示出越来越强大的能力。科学家们认为,为了研究出适用范围广阔的“通用型量子计...PC版:https://www.cnbeta.com/articles/soft/1304907.htm手机版:https://m.cnbeta.com/view/1304907.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人