问医断病这届AI行不行?科学家评估大型语言模型回答医学问题的能力
问医断病这届AI行不行?科学家评估大型语言模型回答医学问题的能力图为研究团队的方法和现有技术的比较。Flan-PaLM540B模型在MedQA,MedMCQA和PubMedQA数据集上均超过了以往最先进的SOTA,每列上方显示的是准确率百分比。图片来源:《自然》就其本身而言,人工智能(AI)给出的答案是准确的。但英国巴斯大学教授詹姆斯·达文波特指出了医学问题和实际行医之间的区别,他认为“行医并不只是回答医学问题,如果纯粹是回答医学问题,我们就不需要教学医院,医生也不需要在学术课程之后接受多年的培训了。”鉴于种种疑惑,在《自然》杂志新近发表的一篇论文中,全球顶尖的人工智能专家们展示了一个基准,用于评估大型自然语言模型能多好地解决人们的医学问题。现有的模型尚不完善最新的这项评估,来自Google研究院和深度思维公司。专家们认为,人工智能模型在医学领域有许多潜力,包括知识检索和支持临床决策。但现有的模型尚不完善,例如可能会编造令人信服的医疗错误信息,或纳入偏见加剧健康不平等。因此才需要对其临床知识进行评估。相关的评估此前并非没有。然而,过去通常依赖有限基准的自动化评估,例如个别医疗测试得分。这转化到真实世界中,可靠性和价值都有欠缺。而且,当人们转向互联网获取医疗信息时,他们会遭遇“信息超载”,然后从10种可能的诊断中选择出最坏的一种,从而承受很多不必要的压力。研究团队希望语言模型能提供简短的专家意见,不带偏见、表明其引用来源,并合理表达出不确定性。5400亿参数的LLM表现如何为评估LLM编码临床知识的能力,Google研究院的专家希库费·阿孜孜及其同事探讨了它们回答医学问题的能力。团队提出了一个基准,称为“MultiMedQA”:它结合了6个涵盖专业医疗、研究和消费者查询的现有问题回答数据集以及“HealthSearchQA”——这是一个新的数据集,包含3173个在线搜索的医学问题。团队随后评估了PaLM(一个5400亿参数的LLM)及其变体Flan-PaLM。他们发现,在一些数据集中Flan-PaLM达到了最先进水平。在整合美国医师执照考试类问题的MedQA数据集中,Flan-PaLM超过此前最先进的LLM达17%。不过,虽然Flan-PaLM的多选题成绩优良,进一步评估显示,它在回答消费者的医疗问题方面存在差距。专精医学的LLM令人鼓舞为解决这一问题,人工智能专家们使用一种称为设计指令微调的方式,进一步调试Flan-PaLM适应医学领域。同时,研究人员介绍了一个专精医学领域的LLM——Med-PaLM。设计指令微调是让通用LLM适用新的专业领域的一种有效方法。产生的模型Med-PaLM在试行评估中表现令人鼓舞。例如,Flan-PaLM被一组医师评分与科学共识一致程度仅61.9%的长回答,Med-PaLM的回答评分为92.6%,相当于医师作出的回答(92.9%)。同样,Flan-PaLM有29.7%的回答被评为可能导致有害结果,Med-PaLM仅5.8%,相当于医师所作的回答(6.5%)。研究团队提到,结果虽然很有前景,但有必要作进一步评估,特别是在涉及安全性、公平性和偏见方面。换句话说,在LLM的临床应用可行之前,还有许多限制要克服。...PC版:https://www.cnbeta.com.tw/articles/soft/1371591.htm手机版:https://m.cnbeta.com.tw/view/1371591.htm